001     888524
005     20230426083224.0
024 7 _ |a 10.1103/PhysRevB.102.184407
|2 doi
024 7 _ |a 0163-1829
|2 ISSN
024 7 _ |a 0556-2805
|2 ISSN
024 7 _ |a 1050-2947
|2 ISSN
024 7 _ |a 1094-1622
|2 ISSN
024 7 _ |a 1095-3795
|2 ISSN
024 7 _ |a 1098-0121
|2 ISSN
024 7 _ |a 1538-4446
|2 ISSN
024 7 _ |a 1538-4489
|2 ISSN
024 7 _ |a 1550-235X
|2 ISSN
024 7 _ |a 2469-9950
|2 ISSN
024 7 _ |a 2469-9969
|2 ISSN
024 7 _ |a 2469-9977
|2 ISSN
024 7 _ |a 2128/26398
|2 Handle
024 7 _ |a altmetric:77234374
|2 altmetric
024 7 _ |a WOS:000587594900006
|2 WOS
037 _ _ |a FZJ-2020-04988
082 _ _ |a 530
100 1 _ |a Redies, Matthias
|0 P:(DE-Juel1)172666
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Mixed topology ring states for Hall effect and orbital magnetism in skyrmions of Weyl semimetals
260 _ _ |a Woodbury, NY
|c 2020
|b Inst.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1615812127_26364
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a As skyrmion lattices are attracting increasing attention owing to their properties driven by real-space topology, properties of magnetic Weyl semimetals with complex k-space topology are moving into the focus of research. We consider Hall transport properties and orbital magnetism of skyrmion lattices imprinted in topological semimetals by employing a minimal model of a mixed Weyl semimetal which, as a function of the magnetization direction, exhibits two Chern insulator phases separated by a Weyl state. We find that while the orbital magnetization is topologically robust and Hall transport properties exhibit a behavior consistent with that expected for the recently discovered chiral Hall effect [F. R. Lux et al., Phys. Rev. Lett. 124, 096602 (2020)], their evolution in the region of the Chern insulator gap is largely determined by the properties of the so-called mixed topology ring states, emerging in domain walls that separate the skyrmion core from the ferromagnetic background. In particular, we show that these localized ring states possess a robust orbital chirality which reverses sign as a function of the skyrmion radius, thereby mediating a smooth switching dynamics of the orbital magnetization. We speculate that while the emergent ring states can possibly play a role in the physics of Majorana states, probing their properties experimentally can provide insights into the details of skyrmionic spin structures.
536 _ _ |a 142 - Controlling Spin-Based Phenomena (POF3-142)
|0 G:(DE-HGF)POF3-142
|c POF3-142
|f POF III
|x 0
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 1
536 _ _ |a Topological transport in real materials from ab initio (jiff40_20190501)
|0 G:(DE-Juel1)jiff40_20190501
|c jiff40_20190501
|f Topological transport in real materials from ab initio
|x 2
542 _ _ |i 2020-11-09
|2 Crossref
|u https://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Lux, F. R.
|0 P:(DE-Juel1)169506
|b 1
700 1 _ |a Hanke, J.-P.
|0 P:(DE-Juel1)161179
|b 2
700 1 _ |a Buhl, P. M.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Blügel, S.
|0 P:(DE-Juel1)130548
|b 4
|u fzj
700 1 _ |a Mokrousov, Y.
|0 P:(DE-Juel1)130848
|b 5
|u fzj
773 1 8 |a 10.1103/physrevb.102.184407
|b American Physical Society (APS)
|d 2020-11-09
|n 18
|p 184407
|3 journal-article
|2 Crossref
|t Physical Review B
|v 102
|y 2020
|x 2469-9950
773 _ _ |a 10.1103/PhysRevB.102.184407
|g Vol. 102, no. 18, p. 184407
|0 PERI:(DE-600)2844160-6
|n 18
|p 184407
|t Physical review / B
|v 102
|y 2020
|x 2469-9950
856 4 _ |u https://juser.fz-juelich.de/record/888524/files/Mixed_topology_ring_states.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/888524/files/PhysRevB.102.184407.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:888524
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)172666
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)169506
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)161179
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130548
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130848
913 1 _ |a DE-HGF
|b Energie
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-142
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Controlling Spin-Based Phenomena
|x 0
913 1 _ |a DE-HGF
|b Energie
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Controlling Configuration-Based Phenomena
|x 1
913 2 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-10-13
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-10-13
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-10-13
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-10-13
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-10-13
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV B : 2018
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-10-13
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts
999 C 5 |a 10.1038/srep45330
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/srep07643
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/srep06784
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1361-648X/ab5488
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/s41565-019-0436-8
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.5006918
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/srep09400
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/acs.nanolett.7b04722
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.aax8156
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1234414
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/s41586-019-1840-9
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.124.066401
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.90.174411
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.81.041203
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevResearch.2.013063
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.111.067203
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.109.037603
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.92.115433
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.92.115417
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1140/epjb/e2018-90090-0
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.96.060406
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.99.060406
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1080/23746149.2017.1327329
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.aav2873
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/s41467-017-01138-7
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/s41467-019-10930-6
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/andp.201900287
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevApplied.10.014007
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/s42005-018-0055-y
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.100.186803
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/jp903397u
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.82.161414
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0022-3719/17/33/015
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1098/rspa.1936.0075
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1098/rspa.1938.0066
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.99.140407
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |y 2017
|2 Crossref
|t Topological Matter: Topological Insulators, Skyrmions and Majoranas
|o Topological Matter: Topological Insulators, Skyrmions and Majoranas 2017
999 C 5 |a 10.1103/PhysRevLett.95.137205
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.95.137204
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1142/S0217979211058912
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.92.037204
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |2 Crossref
|o
999 C 5 |a 10.1103/PhysRevLett.114.177203
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.124.096602
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.92.020401
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.94.121114
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/ncomms13613
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/srep41078
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1367-2630/16/1/015016
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.93.096806
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/s42254-019-0121-8
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.101.014428
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.87.100402
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/s41598-019-41776-z
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.100.134407
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.94.064513
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.97.115136
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/sciadv.aav6600
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.93.224505
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.100.064504
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21