Home > Publications database > Mixed topology ring states for Hall effect and orbital magnetism in skyrmions of Weyl semimetals > print |
001 | 888524 | ||
005 | 20230426083224.0 | ||
024 | 7 | _ | |a 10.1103/PhysRevB.102.184407 |2 doi |
024 | 7 | _ | |a 0163-1829 |2 ISSN |
024 | 7 | _ | |a 0556-2805 |2 ISSN |
024 | 7 | _ | |a 1050-2947 |2 ISSN |
024 | 7 | _ | |a 1094-1622 |2 ISSN |
024 | 7 | _ | |a 1095-3795 |2 ISSN |
024 | 7 | _ | |a 1098-0121 |2 ISSN |
024 | 7 | _ | |a 1538-4446 |2 ISSN |
024 | 7 | _ | |a 1538-4489 |2 ISSN |
024 | 7 | _ | |a 1550-235X |2 ISSN |
024 | 7 | _ | |a 2469-9950 |2 ISSN |
024 | 7 | _ | |a 2469-9969 |2 ISSN |
024 | 7 | _ | |a 2469-9977 |2 ISSN |
024 | 7 | _ | |a 2128/26398 |2 Handle |
024 | 7 | _ | |a altmetric:77234374 |2 altmetric |
024 | 7 | _ | |a WOS:000587594900006 |2 WOS |
037 | _ | _ | |a FZJ-2020-04988 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Redies, Matthias |0 P:(DE-Juel1)172666 |b 0 |e Corresponding author |u fzj |
245 | _ | _ | |a Mixed topology ring states for Hall effect and orbital magnetism in skyrmions of Weyl semimetals |
260 | _ | _ | |a Woodbury, NY |c 2020 |b Inst. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1615812127_26364 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a As skyrmion lattices are attracting increasing attention owing to their properties driven by real-space topology, properties of magnetic Weyl semimetals with complex k-space topology are moving into the focus of research. We consider Hall transport properties and orbital magnetism of skyrmion lattices imprinted in topological semimetals by employing a minimal model of a mixed Weyl semimetal which, as a function of the magnetization direction, exhibits two Chern insulator phases separated by a Weyl state. We find that while the orbital magnetization is topologically robust and Hall transport properties exhibit a behavior consistent with that expected for the recently discovered chiral Hall effect [F. R. Lux et al., Phys. Rev. Lett. 124, 096602 (2020)], their evolution in the region of the Chern insulator gap is largely determined by the properties of the so-called mixed topology ring states, emerging in domain walls that separate the skyrmion core from the ferromagnetic background. In particular, we show that these localized ring states possess a robust orbital chirality which reverses sign as a function of the skyrmion radius, thereby mediating a smooth switching dynamics of the orbital magnetization. We speculate that while the emergent ring states can possibly play a role in the physics of Majorana states, probing their properties experimentally can provide insights into the details of skyrmionic spin structures. |
536 | _ | _ | |a 142 - Controlling Spin-Based Phenomena (POF3-142) |0 G:(DE-HGF)POF3-142 |c POF3-142 |f POF III |x 0 |
536 | _ | _ | |a 143 - Controlling Configuration-Based Phenomena (POF3-143) |0 G:(DE-HGF)POF3-143 |c POF3-143 |f POF III |x 1 |
536 | _ | _ | |a Topological transport in real materials from ab initio (jiff40_20190501) |0 G:(DE-Juel1)jiff40_20190501 |c jiff40_20190501 |f Topological transport in real materials from ab initio |x 2 |
542 | _ | _ | |i 2020-11-09 |2 Crossref |u https://link.aps.org/licenses/aps-default-license |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Lux, F. R. |0 P:(DE-Juel1)169506 |b 1 |
700 | 1 | _ | |a Hanke, J.-P. |0 P:(DE-Juel1)161179 |b 2 |
700 | 1 | _ | |a Buhl, P. M. |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Blügel, S. |0 P:(DE-Juel1)130548 |b 4 |u fzj |
700 | 1 | _ | |a Mokrousov, Y. |0 P:(DE-Juel1)130848 |b 5 |u fzj |
773 | 1 | 8 | |a 10.1103/physrevb.102.184407 |b American Physical Society (APS) |d 2020-11-09 |n 18 |p 184407 |3 journal-article |2 Crossref |t Physical Review B |v 102 |y 2020 |x 2469-9950 |
773 | _ | _ | |a 10.1103/PhysRevB.102.184407 |g Vol. 102, no. 18, p. 184407 |0 PERI:(DE-600)2844160-6 |n 18 |p 184407 |t Physical review / B |v 102 |y 2020 |x 2469-9950 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/888524/files/Mixed_topology_ring_states.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/888524/files/PhysRevB.102.184407.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:888524 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)172666 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)169506 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)161179 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)130548 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)130848 |
913 | 1 | _ | |a DE-HGF |b Energie |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-142 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-100 |4 G:(DE-HGF)POF |v Controlling Spin-Based Phenomena |x 0 |
913 | 1 | _ | |a DE-HGF |b Energie |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-143 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-100 |4 G:(DE-HGF)POF |v Controlling Configuration-Based Phenomena |x 1 |
913 | 2 | _ | |a DE-HGF |b Programmungebundene Forschung |l ohne Programm |1 G:(DE-HGF)POF4-890 |0 G:(DE-HGF)POF4-899 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-800 |4 G:(DE-HGF)POF |v ohne Topic |x 0 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-10-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-10-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1230 |2 StatID |b Current Contents - Electronics and Telecommunications Collection |d 2020-10-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2020-10-13 |
915 | _ | _ | |a American Physical Society Transfer of Copyright Agreement |0 LIC:(DE-HGF)APS-112012 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-10-13 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2020-10-13 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-10-13 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2020-10-13 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV B : 2018 |d 2020-10-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-10-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-10-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-10-13 |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-1-20090406 |k IAS-1 |l Quanten-Theorie der Materialien |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-1-20110106 |k PGI-1 |l Quanten-Theorie der Materialien |x 1 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 2 |
920 | 1 | _ | |0 I:(DE-82)080012_20140620 |k JARA-HPC |l JARA - HPC |x 3 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IAS-1-20090406 |
980 | _ | _ | |a I:(DE-Juel1)PGI-1-20110106 |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
980 | _ | _ | |a I:(DE-82)080012_20140620 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
999 | C | 5 | |a 10.1038/srep45330 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/srep07643 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/srep06784 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1088/1361-648X/ab5488 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/s41565-019-0436-8 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1063/1.5006918 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/srep09400 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1021/acs.nanolett.7b04722 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1126/science.aax8156 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1126/science.1234414 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/s41586-019-1840-9 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.124.066401 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.90.174411 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.81.041203 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevResearch.2.013063 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.111.067203 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.109.037603 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.92.115433 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.92.115417 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1140/epjb/e2018-90090-0 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.96.060406 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.99.060406 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1080/23746149.2017.1327329 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1126/science.aav2873 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/s41467-017-01138-7 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/s41467-019-10930-6 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1002/andp.201900287 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevApplied.10.014007 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/s42005-018-0055-y |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.100.186803 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1021/jp903397u |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.82.161414 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1088/0022-3719/17/33/015 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1098/rspa.1936.0075 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1098/rspa.1938.0066 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.99.140407 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |y 2017 |2 Crossref |t Topological Matter: Topological Insulators, Skyrmions and Majoranas |o Topological Matter: Topological Insulators, Skyrmions and Majoranas 2017 |
999 | C | 5 | |a 10.1103/PhysRevLett.95.137205 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.95.137204 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1142/S0217979211058912 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.92.037204 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |2 Crossref |o |
999 | C | 5 | |a 10.1103/PhysRevLett.114.177203 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.124.096602 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.92.020401 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.94.121114 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/ncomms13613 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/srep41078 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1088/1367-2630/16/1/015016 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.93.096806 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/s42254-019-0121-8 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.101.014428 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.87.100402 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/s41598-019-41776-z |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.100.134407 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.94.064513 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.97.115136 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1126/sciadv.aav6600 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.93.224505 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.100.064504 |9 -- missing cx lookup -- |2 Crossref |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|