Home > Publications database > Mixed topology ring states for Hall effect and orbital magnetism in skyrmions of Weyl semimetals |
Journal Article | FZJ-2020-04988 |
; ; ; ; ;
2020
Inst.
Woodbury, NY
This record in other databases:
Please use a persistent id in citations: http://hdl.handle.net/2128/26398 doi:10.1103/PhysRevB.102.184407
Abstract: As skyrmion lattices are attracting increasing attention owing to their properties driven by real-space topology, properties of magnetic Weyl semimetals with complex k-space topology are moving into the focus of research. We consider Hall transport properties and orbital magnetism of skyrmion lattices imprinted in topological semimetals by employing a minimal model of a mixed Weyl semimetal which, as a function of the magnetization direction, exhibits two Chern insulator phases separated by a Weyl state. We find that while the orbital magnetization is topologically robust and Hall transport properties exhibit a behavior consistent with that expected for the recently discovered chiral Hall effect [F. R. Lux et al., Phys. Rev. Lett. 124, 096602 (2020)], their evolution in the region of the Chern insulator gap is largely determined by the properties of the so-called mixed topology ring states, emerging in domain walls that separate the skyrmion core from the ferromagnetic background. In particular, we show that these localized ring states possess a robust orbital chirality which reverses sign as a function of the skyrmion radius, thereby mediating a smooth switching dynamics of the orbital magnetization. We speculate that while the emergent ring states can possibly play a role in the physics of Majorana states, probing their properties experimentally can provide insights into the details of skyrmionic spin structures.
![]() |
The record appears in these collections: |