000888569 001__ 888569
000888569 005__ 20240712113053.0
000888569 0247_ $$2doi$$a10.1016/j.mattod.2020.11.025
000888569 0247_ $$2ISSN$$a1369-7021
000888569 0247_ $$2ISSN$$a1873-4103
000888569 0247_ $$2Handle$$a2128/27782
000888569 0247_ $$2altmetric$$aaltmetric:97684362
000888569 0247_ $$2WOS$$aWOS:000649193200001
000888569 037__ $$aFZJ-2020-05033
000888569 082__ $$a670
000888569 1001_ $$0P:(DE-Juel1)181055$$aStolz, Lukas$$b0$$ufzj
000888569 245__ $$aThe Sand equation and its enormous practical relevance for solid-state lithium metal batteries
000888569 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2021
000888569 3367_ $$2DRIVER$$aarticle
000888569 3367_ $$2DataCite$$aOutput Types/Journal article
000888569 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1620811819_5231
000888569 3367_ $$2BibTeX$$aARTICLE
000888569 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888569 3367_ $$00$$2EndNote$$aJournal Article
000888569 520__ $$aIn this work, different Li salt concentrations and ionic conductivities of poly(ethylene oxide)-based solid polymer electrolytes (PEO-based SPEs) are correlated with the performance of LiNi0.6Mn0.2Co0.2O2 (NMC622)||Li full cells. While the SPEs with different salt concentrations behave similarly in NMC622||Li cells at 60 °C, their influence on the specific capacities is significant at 40 °C. Below a distinct salt concentration, i.e. > 20:1 (EO:Li), a sudden blocking-type polarization appears, indicatable by an almost vertical voltage profile, both in full and in Li||Li symmetric cells. The corresponding time and current density for this polarization-type is shown to mathematically fit with the Sand equation, which subsequently allows calculation of DLi+. According this relation, lack of Li+ in the electrolyte close to the electrode surface can be concluded to be the origin of this polarization, but is shown to appear only for “kinetically limiting” conditions e.g. above a threshold current density, above a threshold SPE thickness and/or below a threshold salt concentration (ionic conductivity), i.e. at mass transfer limiting conditions. With the support of this relation, maximal applicable current densities and/or SPE thicknesses can be calculated and predicted for SPEs.
000888569 536__ $$0G:(DE-HGF)POF4-122$$a122 - Elektrochemische Energiespeicherung (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000888569 588__ $$aDataset connected to CrossRef
000888569 7001_ $$0P:(DE-Juel1)169878$$aHomann, Gerrit$$b1$$ufzj
000888569 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b2$$eCorresponding author$$ufzj
000888569 7001_ $$0P:(DE-Juel1)171865$$aKasnatscheew, Johannes$$b3$$eCorresponding author$$ufzj
000888569 773__ $$0PERI:(DE-600)2083513-9$$a10.1016/j.mattod.2020.11.025$$gp. S1369702120304521$$p9-14$$tMaterials today$$v44$$x1369-7021$$y2021
000888569 8564_ $$uhttps://juser.fz-juelich.de/record/888569/files/Invoice_OAD0000085791.pdf
000888569 8564_ $$uhttps://juser.fz-juelich.de/record/888569/files/1-s2.0-S1369702120304521-main.pdf$$yOpenAccess
000888569 8767_ $$8OAD0000085791$$92020-12-04$$d2020-12-10$$eHybrid-OA$$jZahlung erfolgt$$zBelegnr. 1200160749
000888569 909CO $$ooai:juser.fz-juelich.de:888569$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000888569 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)181055$$aForschungszentrum Jülich$$b0$$kFZJ
000888569 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169878$$aForschungszentrum Jülich$$b1$$kFZJ
000888569 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b2$$kFZJ
000888569 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171865$$aForschungszentrum Jülich$$b3$$kFZJ
000888569 9130_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000888569 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000888569 9141_ $$y2021
000888569 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-06
000888569 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-06
000888569 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-06
000888569 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000888569 915__ $$0StatID:(DE-HGF)9920$$2StatID$$aIF >= 20$$bMATER TODAY : 2018$$d2020-09-06
000888569 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-06
000888569 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-06
000888569 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000888569 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-06
000888569 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMATER TODAY : 2018$$d2020-09-06
000888569 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-06
000888569 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-06
000888569 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-06
000888569 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000888569 9801_ $$aAPC
000888569 9801_ $$aFullTexts
000888569 980__ $$ajournal
000888569 980__ $$aVDB
000888569 980__ $$aUNRESTRICTED
000888569 980__ $$aI:(DE-Juel1)IEK-12-20141217
000888569 980__ $$aAPC
000888569 981__ $$aI:(DE-Juel1)IMD-4-20141217