000888751 001__ 888751 000888751 005__ 20240712084533.0 000888751 0247_ $$2doi$$a10.1038/s41560-020-00708-2 000888751 0247_ $$2Handle$$a2128/26935 000888751 0247_ $$2altmetric$$aaltmetric:93109754 000888751 0247_ $$2WOS$$aWOS:000584361800003 000888751 037__ $$aFZJ-2020-05180 000888751 082__ $$a330 000888751 1001_ $$0P:(DE-Juel1)159457$$aKirchartz, Thomas$$b0$$eCorresponding author 000888751 245__ $$aMinimum doping densities for p–n junctions 000888751 260__ $$aLondon$$bNature Publishing Group$$c2020 000888751 3367_ $$2DRIVER$$aarticle 000888751 3367_ $$2DataCite$$aOutput Types/Journal article 000888751 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1611328633_26190 000888751 3367_ $$2BibTeX$$aARTICLE 000888751 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000888751 3367_ $$00$$2EndNote$$aJournal Article 000888751 520__ $$aIn their Article, Cui et al.1 describe the fabrication and characterization of planar p–n junction solar cells based on lead-halide perovskites. The formation of a p–n junction is noteworthy given the doping densities, measured using the Hall effect, which were reported to vary from ND = 1 × 1012 cm−3 to 8 × 1012 cm−3 for the solution-processed n-type layer and to equal NA = 8 × 109 cm−3 for the evaporated p-type layer. Although these devices outperform their counterparts that are supposedly undoped, the results raise three important questions. Are the reported doping densities high enough to change the electrostatic potential distribution in the device from that of undoped ones? Are the doping densities high enough for the p–n junction to remain intact under typical photovoltaic operation conditions? Is a p–n junction beneficial for photovoltaic performance given the typical properties of lead-halide perovskites. 000888751 536__ $$0G:(DE-HGF)POF3-121$$a121 - Solar cells of the next generation (POF3-121)$$cPOF3-121$$fPOF III$$x0 000888751 588__ $$aDataset connected to CrossRef 000888751 7001_ $$00000-0001-8118-5446$$aCahen, David$$b1 000888751 773__ $$0PERI:(DE-600)2847369-3$$a10.1038/s41560-020-00708-2$$p973–975$$tNature energy$$v5$$x2058-7546$$y2020 000888751 8564_ $$uhttps://juser.fz-juelich.de/record/888751/files/s41560-020-00708-2.pdf$$yRestricted 000888751 8564_ $$uhttps://juser.fz-juelich.de/record/888751/files/AIP_MA_Kirchartz_sent_clean.pdf$$yPublished on 2019-02-04. Available in OpenAccess from 2019-08-04. 000888751 909CO $$ooai:juser.fz-juelich.de:888751$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000888751 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159457$$aForschungszentrum Jülich$$b0$$kFZJ 000888751 9131_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0 000888751 9141_ $$y2020 000888751 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-11-17 000888751 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-11-17 000888751 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-11-17 000888751 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess 000888751 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT ENERGY : 2018$$d2020-11-17 000888751 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-11-17 000888751 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-11-17 000888751 915__ $$0StatID:(DE-HGF)9950$$2StatID$$aIF >= 50$$bNAT ENERGY : 2018$$d2020-11-17 000888751 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-11-17 000888751 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-11-17 000888751 920__ $$lyes 000888751 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0 000888751 9801_ $$aFullTexts 000888751 980__ $$ajournal 000888751 980__ $$aVDB 000888751 980__ $$aUNRESTRICTED 000888751 980__ $$aI:(DE-Juel1)IEK-5-20101013 000888751 981__ $$aI:(DE-Juel1)IMD-3-20101013