Journal Article FZJ-2020-05180

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Minimum doping densities for p–n junctions

 ;

2020
Nature Publishing Group London

Nature energy 5, 973–975 () [10.1038/s41560-020-00708-2]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: In their Article, Cui et al.1 describe the fabrication and characterization of planar p–n junction solar cells based on lead-halide perovskites. The formation of a p–n junction is noteworthy given the doping densities, measured using the Hall effect, which were reported to vary from ND = 1 × 1012 cm−3 to 8 × 1012 cm−3 for the solution-processed n-type layer and to equal NA = 8 × 109 cm−3 for the evaporated p-type layer. Although these devices outperform their counterparts that are supposedly undoped, the results raise three important questions. Are the reported doping densities high enough to change the electrostatic potential distribution in the device from that of undoped ones? Are the doping densities high enough for the p–n junction to remain intact under typical photovoltaic operation conditions? Is a p–n junction beneficial for photovoltaic performance given the typical properties of lead-halide perovskites.

Classification:

Contributing Institute(s):
  1. Photovoltaik (IEK-5)
Research Program(s):
  1. 121 - Solar cells of the next generation (POF3-121) (POF3-121)

Appears in the scientific report 2020
Database coverage:
Medline ; Embargoed OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Essential Science Indicators ; IF >= 50 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IMD > IMD-3
Workflow collections > Public records
IEK > IEK-5
Publications database
Open Access

 Record created 2020-12-10, last modified 2024-07-12


Published on 2019-02-04. Available in OpenAccess from 2019-08-04.:
Download fulltext PDF
(additional files)
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)