001     888751
005     20240712084533.0
024 7 _ |a 10.1038/s41560-020-00708-2
|2 doi
024 7 _ |a 2128/26935
|2 Handle
024 7 _ |a altmetric:93109754
|2 altmetric
024 7 _ |a WOS:000584361800003
|2 WOS
037 _ _ |a FZJ-2020-05180
082 _ _ |a 330
100 1 _ |a Kirchartz, Thomas
|0 P:(DE-Juel1)159457
|b 0
|e Corresponding author
245 _ _ |a Minimum doping densities for p–n junctions
260 _ _ |a London
|c 2020
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1611328633_26190
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In their Article, Cui et al.1 describe the fabrication and characterization of planar p–n junction solar cells based on lead-halide perovskites. The formation of a p–n junction is noteworthy given the doping densities, measured using the Hall effect, which were reported to vary from ND = 1 × 1012 cm−3 to 8 × 1012 cm−3 for the solution-processed n-type layer and to equal NA = 8 × 109 cm−3 for the evaporated p-type layer. Although these devices outperform their counterparts that are supposedly undoped, the results raise three important questions. Are the reported doping densities high enough to change the electrostatic potential distribution in the device from that of undoped ones? Are the doping densities high enough for the p–n junction to remain intact under typical photovoltaic operation conditions? Is a p–n junction beneficial for photovoltaic performance given the typical properties of lead-halide perovskites.
536 _ _ |a 121 - Solar cells of the next generation (POF3-121)
|0 G:(DE-HGF)POF3-121
|c POF3-121
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Cahen, David
|0 0000-0001-8118-5446
|b 1
773 _ _ |a 10.1038/s41560-020-00708-2
|0 PERI:(DE-600)2847369-3
|p 973–975
|t Nature energy
|v 5
|y 2020
|x 2058-7546
856 4 _ |u https://juser.fz-juelich.de/record/888751/files/s41560-020-00708-2.pdf
|y Restricted
856 4 _ |y Published on 2019-02-04. Available in OpenAccess from 2019-08-04.
|u https://juser.fz-juelich.de/record/888751/files/AIP_MA_Kirchartz_sent_clean.pdf
909 C O |o oai:juser.fz-juelich.de:888751
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)159457
913 1 _ |a DE-HGF
|b Energie
|l Erneuerbare Energien
|1 G:(DE-HGF)POF3-120
|0 G:(DE-HGF)POF3-121
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Solar cells of the next generation
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-11-17
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT ENERGY : 2018
|d 2020-11-17
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-11-17
915 _ _ |a IF >= 50
|0 StatID:(DE-HGF)9950
|2 StatID
|b NAT ENERGY : 2018
|d 2020-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-11-17
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21