001     888775
005     20250701125923.0
024 7 _ |a 10.1088/2399-6528/abd1c3
|2 doi
024 7 _ |a 2128/27335
|2 Handle
024 7 _ |a WOS:000599481400001
|2 WOS
037 _ _ |a FZJ-2020-05204
082 _ _ |a 530
100 1 _ |a Talalwa, Lotfi
|0 P:(DE-Juel1)176218
|b 0
|e Corresponding author
245 _ _ |a Radiological characteristics of a new experimental rubber elastomeric polymer used in three-dimensional printing with different infill densities and patterns
260 _ _ |a Philadelphia, PA
|c 2020
|b IOP Publishing Ltd.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1615284956_3541
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The objective of this study was to investigate new 3D printable materials, namely PORO-LAY series in both solid and flexible forms, on behalf of their radiological properties by measuring their Hounsfield units (HUs) values at varying infill densities, different infill structures and several kinds of fluids in order to assess their suitability as tissue mimicking materials (TMMs) for phantom applications. In this study, it was found that PORO-LAY materials can be used to achieve low and high values of HU ranges from -990 to +950 depending on their infill density and the filling fluids. In addition, PORO-LAY materials have an acceptable dimensional stability and dimensional accuracy in their solid and flexible forms. The results also indicate that the shape of infill pattern influences the values of HU with percentage difference ranges from 3 to 33 % depending on the selected infill structure. The results of this study showed that PORO-LAY materials were feasible to be used as TMMs for CT and PET/CT applications.
536 _ _ |a 573 - Neuroimaging (POF3-573)
|0 G:(DE-HGF)POF3-573
|c POF3-573
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Natour, Ghaleb
|0 P:(DE-Juel1)142196
|b 1
700 1 _ |a Bauer, Andreas
|0 P:(DE-Juel1)131672
|b 2
700 1 _ |a Drzezga, Alexander
|0 P:(DE-Juel1)177611
|b 3
700 1 _ |a Beer, Simone
|0 P:(DE-Juel1)133864
|b 4
|e Corresponding author
773 _ _ |a 10.1088/2399-6528/abd1c3
|0 PERI:(DE-600)2905152-6
|n 12
|p 125006
|t Journal of physics communications
|v 4
|y 2020
|x 2399-6528
856 4 _ |u https://juser.fz-juelich.de/record/888775/files/8164649_0.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/888775/files/Talalwa_2020_J._Phys._Commun._4_125006.pdf
909 C O |o oai:juser.fz-juelich.de:888775
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)176218
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)142196
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-Juel1)142196
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131672
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)177611
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)133864
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-573
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Neuroimaging
|x 0
913 2 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-08
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2020-09-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-09-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-09-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-08
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2020-09-08
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-09-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-09-08
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-09-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-08
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ZEA-1-20090406
|k ZEA-1
|l Zentralinstitut für Technologie
|x 0
920 1 _ |0 I:(DE-Juel1)INM-2-20090406
|k INM-2
|l Molekulare Organisation des Gehirns
|x 1
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ZEA-1-20090406
980 _ _ |a I:(DE-Juel1)INM-2-20090406
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)ITE-20250108


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21