000888821 001__ 888821
000888821 005__ 20230426083225.0
000888821 0247_ $$2doi$$a10.1103/PhysRevB.102.184420
000888821 0247_ $$2ISSN$$a0163-1829
000888821 0247_ $$2ISSN$$a0556-2805
000888821 0247_ $$2ISSN$$a1050-2947
000888821 0247_ $$2ISSN$$a1094-1622
000888821 0247_ $$2ISSN$$a1095-3795
000888821 0247_ $$2ISSN$$a1098-0121
000888821 0247_ $$2ISSN$$a1538-4446
000888821 0247_ $$2ISSN$$a1538-4489
000888821 0247_ $$2ISSN$$a1550-235X
000888821 0247_ $$2ISSN$$a2469-9950
000888821 0247_ $$2ISSN$$a2469-9969
000888821 0247_ $$2ISSN$$a2469-9977
000888821 0247_ $$2Handle$$a2128/26538
000888821 0247_ $$2altmetric$$aaltmetric:94483720
000888821 0247_ $$2WOS$$aWOS:000589902700002
000888821 037__ $$aFZJ-2020-05235
000888821 041__ $$aEnglish
000888821 082__ $$a530
000888821 1001_ $$00000-0003-4449-9563$$aZanfrognini, Matteo$$b0$$eCorresponding author
000888821 245__ $$aDynamical diffraction effects in STEM orbital angular momentum resolved electron energy-loss magnetic chiral dichroism
000888821 260__ $$aWoodbury, NY$$bInst.$$c2020
000888821 3367_ $$2DRIVER$$aarticle
000888821 3367_ $$2DataCite$$aOutput Types/Journal article
000888821 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1607969716_18530
000888821 3367_ $$2BibTeX$$aARTICLE
000888821 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888821 3367_ $$00$$2EndNote$$aJournal Article
000888821 520__ $$aIn this paper, we explore the properties of dynamical diffraction coefficients in orbital angular momentum resolved electron energy-loss magnetic chiral dichroism spectra, in a scanning transmission electron microscopy setup. We demonstrate that for basic zone axis geometries with fourfold or threefold symmetry the coefficients are constrained to have simplified forms. By exploiting these properties, we show how a dichroism spectrum accessible using this technique is only weakly dependent on sample thickness and, more generally, on dynamical diffraction effects. Our results indicate that in such cases it is possible to determine the orbital and spin components of atomic magnetic moments approximately from experimental spectra without the need for additional dynamical diffraction calculations.
000888821 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000888821 536__ $$0G:(EU-Grant)766970$$aQ-SORT - QUANTUM SORTER (766970)$$c766970$$fH2020-FETOPEN-1-2016-2017$$x1
000888821 536__ $$0G:(EU-Grant)856538$$a3D MAGiC - Three-dimensional magnetization textures: Discovery and control on the nanoscale (856538)$$c856538$$fERC-2019-SyG$$x2
000888821 536__ $$0G:(EU-Grant)823717$$aESTEEM3 - Enabling Science and Technology through European Electron Microscopy (823717)$$c823717$$fH2020-INFRAIA-2018-1$$x3
000888821 536__ $$0G:(DE-Juel-1)Z1422.01.18$$aDARPA, Phase 2 - Defense Advanced Research Projects Agency Manipulation of magnetic skyrmions for logicin- memory applications (Z1422.01.18)$$cZ1422.01.18$$x4
000888821 536__ $$0G:(GEPRIS)405553726$$aDFG project 405553726 - TRR 270: Hysterese-Design magnetischer Materialien für effiziente Energieumwandlung (405553726)$$c405553726$$x5
000888821 542__ $$2Crossref$$i2020-11-17$$uhttps://link.aps.org/licenses/aps-default-license
000888821 588__ $$aDataset connected to CrossRef
000888821 7001_ $$0P:(DE-HGF)0$$aRotunno, Enzo$$b1
000888821 7001_ $$0P:(DE-HGF)0$$aRusz, Jan$$b2
000888821 7001_ $$0P:(DE-Juel1)144121$$aDunin Borkowski, Rafal E.$$b3$$eCorresponding author
000888821 7001_ $$0P:(DE-HGF)0$$aKarimi, Ebrahim$$b4
000888821 7001_ $$0P:(DE-HGF)0$$aFrabboni, Stefano$$b5
000888821 7001_ $$0P:(DE-HGF)0$$aGrillo, Vincenzo$$b6
000888821 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.102.184420$$bAmerican Physical Society (APS)$$d2020-11-17$$n18$$p184420$$tPhysical Review B$$v102$$x2469-9950$$y2020
000888821 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.102.184420$$gVol. 102, no. 18, p. 184420$$n18$$p184420$$tPhysical review / B$$v102$$x2469-9950$$y2020
000888821 8564_ $$uhttps://juser.fz-juelich.de/record/888821/files/PhysRevB.102.184420.pdf$$yOpenAccess
000888821 909CO $$ooai:juser.fz-juelich.de:888821$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000888821 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b3$$kFZJ
000888821 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000888821 9141_ $$y2020
000888821 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-10-13
000888821 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-10-13
000888821 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2020-10-13
000888821 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-10-13
000888821 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000888821 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-10-13
000888821 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-10-13
000888821 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-10-13
000888821 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000888821 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-10-13
000888821 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2018$$d2020-10-13
000888821 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-10-13
000888821 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-10-13
000888821 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-10-13
000888821 920__ $$lyes
000888821 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000888821 980__ $$ajournal
000888821 980__ $$aVDB
000888821 980__ $$aUNRESTRICTED
000888821 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000888821 9801_ $$aFullTexts
000888821 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature04778
000888821 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.68.1943
000888821 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.70.694
000888821 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.76.060409
000888821 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.76.060408
000888821 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.100.224409
000888821 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms15536
000888821 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.75.214425
000888821 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acsphotonics.9b00131
000888821 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.96.245121
000888821 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ultramic.2017.03.019
000888821 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1367-2630/7/1/046
000888821 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ultramic.2013.07.012
000888821 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ultramic.2017.01.008
000888821 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevApplied.11.044072
000888821 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.75.152