001     888821
005     20230426083225.0
024 7 _ |a 10.1103/PhysRevB.102.184420
|2 doi
024 7 _ |a 0163-1829
|2 ISSN
024 7 _ |a 0556-2805
|2 ISSN
024 7 _ |a 1050-2947
|2 ISSN
024 7 _ |a 1094-1622
|2 ISSN
024 7 _ |a 1095-3795
|2 ISSN
024 7 _ |a 1098-0121
|2 ISSN
024 7 _ |a 1538-4446
|2 ISSN
024 7 _ |a 1538-4489
|2 ISSN
024 7 _ |a 1550-235X
|2 ISSN
024 7 _ |a 2469-9950
|2 ISSN
024 7 _ |a 2469-9969
|2 ISSN
024 7 _ |a 2469-9977
|2 ISSN
024 7 _ |a 2128/26538
|2 Handle
024 7 _ |a altmetric:94483720
|2 altmetric
024 7 _ |a WOS:000589902700002
|2 WOS
037 _ _ |a FZJ-2020-05235
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Zanfrognini, Matteo
|0 0000-0003-4449-9563
|b 0
|e Corresponding author
245 _ _ |a Dynamical diffraction effects in STEM orbital angular momentum resolved electron energy-loss magnetic chiral dichroism
260 _ _ |a Woodbury, NY
|c 2020
|b Inst.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1607969716_18530
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In this paper, we explore the properties of dynamical diffraction coefficients in orbital angular momentum resolved electron energy-loss magnetic chiral dichroism spectra, in a scanning transmission electron microscopy setup. We demonstrate that for basic zone axis geometries with fourfold or threefold symmetry the coefficients are constrained to have simplified forms. By exploiting these properties, we show how a dichroism spectrum accessible using this technique is only weakly dependent on sample thickness and, more generally, on dynamical diffraction effects. Our results indicate that in such cases it is possible to determine the orbital and spin components of atomic magnetic moments approximately from experimental spectra without the need for additional dynamical diffraction calculations.
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|x 0
|f POF III
536 _ _ |a Q-SORT - QUANTUM SORTER (766970)
|0 G:(EU-Grant)766970
|c 766970
|x 1
|f H2020-FETOPEN-1-2016-2017
536 _ _ |a 3D MAGiC - Three-dimensional magnetization textures: Discovery and control on the nanoscale (856538)
|0 G:(EU-Grant)856538
|c 856538
|x 2
|f ERC-2019-SyG
536 _ _ |a ESTEEM3 - Enabling Science and Technology through European Electron Microscopy (823717)
|0 G:(EU-Grant)823717
|c 823717
|x 3
|f H2020-INFRAIA-2018-1
536 _ _ |a DARPA, Phase 2 - Defense Advanced Research Projects Agency Manipulation of magnetic skyrmions for logicin- memory applications (Z1422.01.18)
|0 G:(DE-Juel-1)Z1422.01.18
|c Z1422.01.18
|x 4
536 _ _ |a DFG project 405553726 - TRR 270: Hysterese-Design magnetischer Materialien für effiziente Energieumwandlung (405553726)
|0 G:(GEPRIS)405553726
|c 405553726
|x 5
542 _ _ |i 2020-11-17
|2 Crossref
|u https://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Rotunno, Enzo
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Rusz, Jan
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Dunin Borkowski, Rafal E.
|0 P:(DE-Juel1)144121
|b 3
|e Corresponding author
700 1 _ |a Karimi, Ebrahim
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Frabboni, Stefano
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Grillo, Vincenzo
|0 P:(DE-HGF)0
|b 6
773 1 8 |a 10.1103/physrevb.102.184420
|b American Physical Society (APS)
|d 2020-11-17
|n 18
|p 184420
|3 journal-article
|2 Crossref
|t Physical Review B
|v 102
|y 2020
|x 2469-9950
773 _ _ |a 10.1103/PhysRevB.102.184420
|g Vol. 102, no. 18, p. 184420
|0 PERI:(DE-600)2844160-6
|n 18
|p 184420
|t Physical review / B
|v 102
|y 2020
|x 2469-9950
856 4 _ |u https://juser.fz-juelich.de/record/888821/files/PhysRevB.102.184420.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:888821
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)144121
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-10-13
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-10-13
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-10-13
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-10-13
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-10-13
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV B : 2018
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-10-13
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 1 _ |a FullTexts
999 C 5 |a 10.1038/nature04778
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.68.1943
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.70.694
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.76.060409
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.76.060408
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.100.224409
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/ncomms15536
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.75.214425
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/acsphotonics.9b00131
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.96.245121
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.ultramic.2017.03.019
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1367-2630/7/1/046
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.ultramic.2013.07.012
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.ultramic.2017.01.008
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevApplied.11.044072
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.75.152
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21