Home > Publications database > Dynamical diffraction effects in STEM orbital angular momentum resolved electron energy-loss magnetic chiral dichroism > print |
001 | 888821 | ||
005 | 20230426083225.0 | ||
024 | 7 | _ | |a 10.1103/PhysRevB.102.184420 |2 doi |
024 | 7 | _ | |a 0163-1829 |2 ISSN |
024 | 7 | _ | |a 0556-2805 |2 ISSN |
024 | 7 | _ | |a 1050-2947 |2 ISSN |
024 | 7 | _ | |a 1094-1622 |2 ISSN |
024 | 7 | _ | |a 1095-3795 |2 ISSN |
024 | 7 | _ | |a 1098-0121 |2 ISSN |
024 | 7 | _ | |a 1538-4446 |2 ISSN |
024 | 7 | _ | |a 1538-4489 |2 ISSN |
024 | 7 | _ | |a 1550-235X |2 ISSN |
024 | 7 | _ | |a 2469-9950 |2 ISSN |
024 | 7 | _ | |a 2469-9969 |2 ISSN |
024 | 7 | _ | |a 2469-9977 |2 ISSN |
024 | 7 | _ | |a 2128/26538 |2 Handle |
024 | 7 | _ | |a altmetric:94483720 |2 altmetric |
024 | 7 | _ | |a WOS:000589902700002 |2 WOS |
037 | _ | _ | |a FZJ-2020-05235 |
041 | _ | _ | |a English |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Zanfrognini, Matteo |0 0000-0003-4449-9563 |b 0 |e Corresponding author |
245 | _ | _ | |a Dynamical diffraction effects in STEM orbital angular momentum resolved electron energy-loss magnetic chiral dichroism |
260 | _ | _ | |a Woodbury, NY |c 2020 |b Inst. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1607969716_18530 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a In this paper, we explore the properties of dynamical diffraction coefficients in orbital angular momentum resolved electron energy-loss magnetic chiral dichroism spectra, in a scanning transmission electron microscopy setup. We demonstrate that for basic zone axis geometries with fourfold or threefold symmetry the coefficients are constrained to have simplified forms. By exploiting these properties, we show how a dichroism spectrum accessible using this technique is only weakly dependent on sample thickness and, more generally, on dynamical diffraction effects. Our results indicate that in such cases it is possible to determine the orbital and spin components of atomic magnetic moments approximately from experimental spectra without the need for additional dynamical diffraction calculations. |
536 | _ | _ | |a 143 - Controlling Configuration-Based Phenomena (POF3-143) |0 G:(DE-HGF)POF3-143 |c POF3-143 |x 0 |f POF III |
536 | _ | _ | |a Q-SORT - QUANTUM SORTER (766970) |0 G:(EU-Grant)766970 |c 766970 |x 1 |f H2020-FETOPEN-1-2016-2017 |
536 | _ | _ | |a 3D MAGiC - Three-dimensional magnetization textures: Discovery and control on the nanoscale (856538) |0 G:(EU-Grant)856538 |c 856538 |x 2 |f ERC-2019-SyG |
536 | _ | _ | |a ESTEEM3 - Enabling Science and Technology through European Electron Microscopy (823717) |0 G:(EU-Grant)823717 |c 823717 |x 3 |f H2020-INFRAIA-2018-1 |
536 | _ | _ | |a DARPA, Phase 2 - Defense Advanced Research Projects Agency Manipulation of magnetic skyrmions for logicin- memory applications (Z1422.01.18) |0 G:(DE-Juel-1)Z1422.01.18 |c Z1422.01.18 |x 4 |
536 | _ | _ | |a DFG project 405553726 - TRR 270: Hysterese-Design magnetischer Materialien für effiziente Energieumwandlung (405553726) |0 G:(GEPRIS)405553726 |c 405553726 |x 5 |
542 | _ | _ | |i 2020-11-17 |2 Crossref |u https://link.aps.org/licenses/aps-default-license |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Rotunno, Enzo |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Rusz, Jan |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Dunin Borkowski, Rafal E. |0 P:(DE-Juel1)144121 |b 3 |e Corresponding author |
700 | 1 | _ | |a Karimi, Ebrahim |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Frabboni, Stefano |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Grillo, Vincenzo |0 P:(DE-HGF)0 |b 6 |
773 | 1 | 8 | |a 10.1103/physrevb.102.184420 |b American Physical Society (APS) |d 2020-11-17 |n 18 |p 184420 |3 journal-article |2 Crossref |t Physical Review B |v 102 |y 2020 |x 2469-9950 |
773 | _ | _ | |a 10.1103/PhysRevB.102.184420 |g Vol. 102, no. 18, p. 184420 |0 PERI:(DE-600)2844160-6 |n 18 |p 184420 |t Physical review / B |v 102 |y 2020 |x 2469-9950 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/888821/files/PhysRevB.102.184420.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:888821 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)144121 |
913 | 1 | _ | |a DE-HGF |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-143 |2 G:(DE-HGF)POF3-100 |v Controlling Configuration-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-10-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-10-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1230 |2 StatID |b Current Contents - Electronics and Telecommunications Collection |d 2020-10-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2020-10-13 |
915 | _ | _ | |a American Physical Society Transfer of Copyright Agreement |0 LIC:(DE-HGF)APS-112012 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-10-13 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2020-10-13 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-10-13 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2020-10-13 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV B : 2018 |d 2020-10-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-10-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-10-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-10-13 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)ER-C-1-20170209 |k ER-C-1 |l Physik Nanoskaliger Systeme |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)ER-C-1-20170209 |
980 | 1 | _ | |a FullTexts |
999 | C | 5 | |a 10.1038/nature04778 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.68.1943 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.70.694 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.76.060409 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.76.060408 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.100.224409 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/ncomms15536 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.75.214425 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1021/acsphotonics.9b00131 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.96.245121 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.ultramic.2017.03.019 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1088/1367-2630/7/1/046 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.ultramic.2013.07.012 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.ultramic.2017.01.008 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevApplied.11.044072 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.75.152 |9 -- missing cx lookup -- |2 Crossref |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|