001     888841
005     20250314084119.0
024 7 _ |a 10.1098/rsfs.2019.0119
|2 doi
024 7 _ |a 2042-8898
|2 ISSN
024 7 _ |a 2042-8901
|2 ISSN
024 7 _ |a 2128/26553
|2 Handle
024 7 _ |a 33335704
|2 pmid
024 7 _ |a WOS:000600128700002
|2 WOS
037 _ _ |a FZJ-2020-05255
082 _ _ |a 570
100 1 _ |a McCullough, J. W. S.
|0 0000-0002-9606-0408
|b 0
|e Corresponding author
245 _ _ |a Towards blood flow in the virtual human: efficient self-coupling of HemeLB
260 _ _ |a London
|c 2021
|b Royal Society Publishing
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1646033381_3166
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Many scientific and medical researchers areworking towards the creation of avirtual human—a personalized digital copy of an individual—that will assistin a patient’s diagnosis, treatment and recovery. The complex nature of livingsystems means that the development of this remains a major challenge. Wedescribe progress in enabling the HemeLB lattice Boltzmann code to simulate3D macroscopic blood flowon a full human scale. Significant developments inmemory management and load balancing allow near linear scaling performanceof the code on hundreds of thousands of computer cores. Integral tothe construction of a virtual human, we also outline the implementation of aself-coupling strategy for HemeLB. This allows simultaneous simulation ofarterial and venous vascular trees based on human-specific geometries.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 1
536 _ _ |a E-CAM - An e-infrastructure for software, training and consultancy in simulation and modelling (676531)
|0 G:(EU-Grant)676531
|c 676531
|f H2020-EINFRA-2015-1
|x 2
536 _ _ |a POP - Performance Optimisation and Productivity (676553)
|0 G:(EU-Grant)676553
|c 676553
|f H2020-EINFRA-2015-1
|x 3
536 _ _ |a POP2 - Performance Optimisation and Productivity 2 (824080)
|0 G:(EU-Grant)824080
|c 824080
|f H2020-INFRAEDI-2018-1
|x 4
536 _ _ |a CompBioMed - A Centre of Excellence in Computational Biomedicine (675451)
|0 G:(EU-Grant)675451
|c 675451
|f H2020-EINFRA-2015-1
|x 5
536 _ _ |a CompBioMed2 - A Centre of Excellence in Computational Biomedicine (823712)
|0 G:(EU-Grant)823712
|c 823712
|f H2020-INFRAEDI-2018-1
|x 6
536 _ _ |0 G:(DE-Juel-1)ATMLPP
|a ATMLPP - ATML Parallel Performance (ATMLPP)
|c ATMLPP
|x 7
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Richardson, R. A.
|0 0000-0002-9984-2720
|b 1
700 1 _ |a Patronis, A.
|0 P:(DE-Juel1)179111
|b 2
|u fzj
700 1 _ |a Halver, R.
|0 P:(DE-Juel1)132124
|b 3
|u fzj
700 1 _ |a Marshall, R.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Ruefenacht, M.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Wylie, B. J. N.
|0 P:(DE-Juel1)132302
|b 6
|u fzj
700 1 _ |a Odaker, T.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Wiedemann, M.
|0 P:(DE-Juel1)131906
|b 8
700 1 _ |a Lloyd, B.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Neufeld, E.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Sutmann, Godehard
|0 P:(DE-Juel1)132274
|b 11
700 1 _ |a Skjellum, A.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Kranzlmüller, D.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Coveney, P. V.
|0 0000-0002-8787-7256
|b 14
|e Corresponding author
773 _ _ |a 10.1098/rsfs.2019.0119
|g Vol. 11, no. 1, p. 20190119 -
|0 PERI:(DE-600)2585655-8
|n 1
|p 20190119 -
|t Interface focus
|v 11
|y 2021
|x 2042-8901
856 4 _ |u https://juser.fz-juelich.de/record/888841/files/rsfs.2019.0119.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:888841
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)179111
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)132124
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)132302
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)132274
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 1
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-08-22
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INTERFACE FOCUS : 2018
|d 2020-08-22
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-22
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-08-22
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2020-08-22
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-22
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21