000888931 001__ 888931
000888931 005__ 20240610120100.0
000888931 0247_ $$2doi$$a10.1039/D0SM01569E
000888931 0247_ $$2ISSN$$a1744-683X
000888931 0247_ $$2ISSN$$a1744-6848
000888931 0247_ $$2Handle$$a2128/26968
000888931 0247_ $$2altmetric$$aaltmetric:92453632
000888931 0247_ $$2pmid$$a33089276
000888931 0247_ $$2WOS$$aWOS:000599748700009
000888931 037__ $$aFZJ-2020-05330
000888931 082__ $$a530
000888931 1001_ $$0P:(DE-Juel1)174327$$aClopes, Judit$$b0$$ufzj
000888931 245__ $$aHydrodynamic interactions in squirmer dumbbells: active stress-induced alignment and locomotion
000888931 260__ $$aLondon$$bRoyal Soc. of Chemistry$$c2020
000888931 3367_ $$2DRIVER$$aarticle
000888931 3367_ $$2DataCite$$aOutput Types/Journal article
000888931 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1611415859_30479
000888931 3367_ $$2BibTeX$$aARTICLE
000888931 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888931 3367_ $$00$$2EndNote$$aJournal Article
000888931 520__ $$aHydrodynamic interactions are fundamental for the dynamics of swimming self-propelled particles. Specifically, bonds between microswimmers enforce permanent spatial proximity and, thus, enhance emergent correlations by microswimmer-specific flow fields. We employ the squirmer model to study the swimming behavior of microswimmer dumbbells by mesoscale hydrodynamic simulations, where the squirmers’ rotational motion is geometrically unrestricted. An important aspect of the applied particle-based simulation approach—the multiparticle collision dynamics method—is the intrinsic account for thermal fluctuations. We find a strong effect of active stress on the motility of dumbbells. In particular, pairs of strong pullers exhibit orders of magnitude smaller swimming efficiency than pairs of pushers. This is a consequence of the inherent thermal fluctuations in combination with the strong coupling of the squirmers’ rotational motion, which implies non-exponentially decaying auto- and cross-correlation functions of the propulsion directions, and active stress-dependent characteristic decay times. As a consequence, specific stationary-state relative alignments of the squirmer propulsion directions emerge, where pullers are preferentially aligned in an antiparallel manner along the bond vector, whereas pushers are preferentially aligned normal to the bond vector with a relative angle of approximately 60° at weak active stress, and one of the propulsion directions is aligned with the bond at strong active stress. The distinct differences between dumbbells comprised of pusher or pullers suggest means to control microswimmer assemblies for future microbot applications.
000888931 536__ $$0G:(DE-HGF)POF3-553$$a553 - Physical Basis of Diseases (POF3-553)$$cPOF3-553$$fPOF III$$x0
000888931 588__ $$aDataset connected to CrossRef
000888931 7001_ $$0P:(DE-Juel1)130665$$aGompper, Gerhard$$b1$$eCorresponding author
000888931 7001_ $$0P:(DE-Juel1)131039$$aWinkler, Roland G.$$b2$$eCorresponding author
000888931 773__ $$0PERI:(DE-600)2191476-X$$a10.1039/D0SM01569E$$gVol. 16, no. 47, p. 10676 - 10687$$n47$$p10676 - 10687$$tSoft matter$$v16$$x1744-6848$$y2020
000888931 8564_ $$uhttps://juser.fz-juelich.de/record/888931/files/d0sm01569e-1.pdf$$yRestricted
000888931 8564_ $$uhttps://juser.fz-juelich.de/record/888931/files/D0SM01569E.pdf$$yPublished on 2020-10-15. Available in OpenAccess from 2021-10-15.
000888931 909CO $$ooai:juser.fz-juelich.de:888931$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000888931 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174327$$aForschungszentrum Jülich$$b0$$kFZJ
000888931 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130665$$aForschungszentrum Jülich$$b1$$kFZJ
000888931 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131039$$aForschungszentrum Jülich$$b2$$kFZJ
000888931 9131_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0
000888931 9141_ $$y2020
000888931 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-03
000888931 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-03
000888931 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000888931 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOFT MATTER : 2018$$d2020-09-03
000888931 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-03
000888931 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-03
000888931 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-03
000888931 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG$$d2020-09-03$$wger
000888931 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-03
000888931 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-09-03$$wger
000888931 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-03
000888931 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-09-03$$wger
000888931 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-03
000888931 9201_ $$0I:(DE-Juel1)IAS-2-20090406$$kIAS-2$$lTheorie der Weichen Materie und Biophysik$$x0
000888931 9201_ $$0I:(DE-Juel1)IBI-5-20200312$$kIBI-5$$lTheoretische Physik der Lebenden Materie$$x1
000888931 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x2
000888931 9201_ $$0I:(DE-82)080008_20150909$$kJARA-SOFT$$lJARA-SOFT$$x3
000888931 9801_ $$aFullTexts
000888931 980__ $$ajournal
000888931 980__ $$aVDB
000888931 980__ $$aUNRESTRICTED
000888931 980__ $$aI:(DE-Juel1)IAS-2-20090406
000888931 980__ $$aI:(DE-Juel1)IBI-5-20200312
000888931 980__ $$aI:(DE-82)080012_20140620
000888931 980__ $$aI:(DE-82)080008_20150909
000888931 981__ $$aI:(DE-Juel1)IAS-2-20090406