Journal Article FZJ-2020-05330

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Hydrodynamic interactions in squirmer dumbbells: active stress-induced alignment and locomotion

 ;  ;

2020
Royal Soc. of Chemistry London

Soft matter 16(47), 10676 - 10687 () [10.1039/D0SM01569E]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: Hydrodynamic interactions are fundamental for the dynamics of swimming self-propelled particles. Specifically, bonds between microswimmers enforce permanent spatial proximity and, thus, enhance emergent correlations by microswimmer-specific flow fields. We employ the squirmer model to study the swimming behavior of microswimmer dumbbells by mesoscale hydrodynamic simulations, where the squirmers’ rotational motion is geometrically unrestricted. An important aspect of the applied particle-based simulation approach—the multiparticle collision dynamics method—is the intrinsic account for thermal fluctuations. We find a strong effect of active stress on the motility of dumbbells. In particular, pairs of strong pullers exhibit orders of magnitude smaller swimming efficiency than pairs of pushers. This is a consequence of the inherent thermal fluctuations in combination with the strong coupling of the squirmers’ rotational motion, which implies non-exponentially decaying auto- and cross-correlation functions of the propulsion directions, and active stress-dependent characteristic decay times. As a consequence, specific stationary-state relative alignments of the squirmer propulsion directions emerge, where pullers are preferentially aligned in an antiparallel manner along the bond vector, whereas pushers are preferentially aligned normal to the bond vector with a relative angle of approximately 60° at weak active stress, and one of the propulsion directions is aligned with the bond at strong active stress. The distinct differences between dumbbells comprised of pusher or pullers suggest means to control microswimmer assemblies for future microbot applications.

Classification:

Contributing Institute(s):
  1. Theorie der Weichen Materie und Biophysik (IAS-2)
  2. Theoretische Physik der Lebenden Materie (IBI-5)
  3. JARA - HPC (JARA-HPC)
  4. JARA-SOFT (JARA-SOFT)
Research Program(s):
  1. 553 - Physical Basis of Diseases (POF3-553) (POF3-553)

Appears in the scientific report 2020
Database coverage:
Medline ; Embargoed OpenAccess ; Allianz-Lizenz / DFG ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; Essential Science Indicators ; IF < 5 ; JCR ; National-Konsortium ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
JARA > JARA > JARA-JARA\-SOFT
JARA > JARA > JARA-JARA\-HPC
Institute Collections > IBI > IBI-5
Institute Collections > IAS > IAS-2
Workflow collections > Public records
Publications database
Open Access

 Record created 2020-12-17, last modified 2024-06-10


Published on 2020-10-15. Available in OpenAccess from 2021-10-15.:
Download fulltext PDF
(additional files)
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)