000888942 001__ 888942
000888942 005__ 20240712113232.0
000888942 0247_ $$2doi$$a10.1063/5.0033891
000888942 0247_ $$2Handle$$a2128/28368
000888942 0247_ $$2WOS$$aWOS:000629950200004
000888942 037__ $$aFZJ-2020-05341
000888942 082__ $$a600
000888942 1001_ $$0P:(DE-Juel1)142194$$aRodenbücher, Christian$$b0$$eCorresponding author
000888942 245__ $$aA Physical Method for Investigating Defect Chemistry in Solid Metal Oxides
000888942 260__ $$aMelville, NY$$bAIP Publ.$$c2021
000888942 3367_ $$2DRIVER$$aarticle
000888942 3367_ $$2DataCite$$aOutput Types/Journal article
000888942 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1627634457_23339
000888942 3367_ $$2BibTeX$$aARTICLE
000888942 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888942 3367_ $$00$$2EndNote$$aJournal Article
000888942 520__ $$aThe investigation of the defect chemistry of solid oxides is of central importance for the understanding of redox processes. This can be performed by measuring conductivity as a function of the oxygen partial pressure, which is conventionally established by using buffer gas mixtures or oxygen pumps based on zirconia. However, this approach has some limitations, such as difficulty in regulating oxygen partial pressure in some intermediate-pressure regions or the possibility of influencing the redox process by gases that can also be incorporated into the oxide or react with the surface via heterogeneous catalysis. Herein, we present an alternative physical method in which the oxygen partial pressure is controlled by dosing pure oxygen inside an ultra-high vacuum chamber. To monitor the conductivity of the oxide under investigation, we employ a dedicated four-probe measurement system that relies on the application of a very small AC voltage, in combination with lock-in data acquisition using highly sensitive electrometers, minimizing the electrochemical polarization or electro-reduction and degradation effects. By analyzing the model material SrTiO3, we demonstrate that its characteristic redox behavior can be reproduced in good agreement with the theory when performing simultaneous electrical conductivity relaxation and high-temperature equilibrium conductivity measurements. We show that the use of pure oxygen allows for a direct analysis of the characteristic oxygen dose, which opens up various perspectives for a detailed analysis of the surface chemistry of redox processes.
000888942 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
000888942 7001_ $$0P:(DE-Juel1)140525$$aKorte, Carsten$$b1
000888942 7001_ $$0P:(DE-HGF)0$$aSchmitz-Kempen, Thorsten$$b2
000888942 7001_ $$0P:(DE-HGF)0$$aBette, Sebastian$$b3
000888942 7001_ $$0P:(DE-HGF)0$$aSzot, Kristof$$b4
000888942 773__ $$0PERI:(DE-600)2722985-3$$a10.1063/5.0033891$$p011106$$tAPL materials$$v9$$x2166-532X$$y2021
000888942 8564_ $$uhttps://juser.fz-juelich.de/record/888942/files/APM_invoice_APM20-AR-01034_00479.pdf
000888942 8564_ $$uhttps://juser.fz-juelich.de/record/888942/files/5.0033891.pdf$$yOpenAccess
000888942 8767_ $$8APM20-AR-01034_00479$$92021-01-01$$d2021-01-07$$eAPC$$jZahlung erfolgt$$z$2750, Belegnummer 1200161704
000888942 909CO $$ooai:juser.fz-juelich.de:888942$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000888942 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142194$$aForschungszentrum Jülich$$b0$$kFZJ
000888942 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140525$$aForschungszentrum Jülich$$b1$$kFZJ
000888942 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)140525$$aRWTH Aachen$$b1$$kRWTH
000888942 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000888942 9141_ $$y2021
000888942 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-06
000888942 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-06
000888942 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-09-06
000888942 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000888942 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPL MATER : 2018$$d2020-09-06
000888942 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-06
000888942 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-06
000888942 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-06
000888942 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-06
000888942 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-06
000888942 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-06
000888942 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000888942 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2020-09-06
000888942 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-06
000888942 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-06
000888942 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-06
000888942 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-06
000888942 920__ $$lyes
000888942 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
000888942 9801_ $$aAPC
000888942 9801_ $$aFullTexts
000888942 980__ $$ajournal
000888942 980__ $$aVDB
000888942 980__ $$aUNRESTRICTED
000888942 980__ $$aI:(DE-Juel1)IEK-14-20191129
000888942 980__ $$aAPC
000888942 981__ $$aI:(DE-Juel1)IET-4-20191129