Home > Publications database > Nitrogen acquisition, fixation and transfer in alfalfa-maize intercrops are increased through root contact and morphology responses tointerspecies competition > print |
001 | 888982 | ||
005 | 20230111074307.0 | ||
024 | 7 | _ | |a 10.1016/S2095-3119(20)63330-5 |2 doi |
024 | 7 | _ | |a 2128/28156 |2 Handle |
024 | 7 | _ | |a altmetric:109044257 |2 altmetric |
024 | 7 | _ | |a WOS:000668520200019 |2 WOS |
037 | _ | _ | |a FZJ-2020-05369 |
041 | _ | _ | |a English |
082 | _ | _ | |a 640 |
100 | 1 | _ | |a SHAO, Ze-qiang |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Nitrogen acquisition, fixation and transfer in alfalfa-maize intercrops are increased through root contact and morphology responses tointerspecies competition |
260 | _ | _ | |a Amsterdam [u.a.] |c 2020 |b Elsevier |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1626176307_14726 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Nitrogen (N) fixation by legumes and nitrogen transfer to cereals have been considered as important pathways for overyielding and higher N use efficiency in cereal/legume intercropping systems. However, the extent to which root morphology contributes to N fixation and transfer is unclear. A two-factorial greenhouse experiment was conducted to quantify the N fixation, transfer and root morphology characteristics of the maize/alfalfa intercropping system in two consecutive years using the 15N-urea leaf labeling method, and combining two N levels with three root separation techniques. N application could inhibit N fixation and transfer in a maize/alfalfa intercropping system. Irrespective of the N application level, compared with plastic sheet separation (PSS), no separation (NS) and nylon mesh separation (NNS) significantly increased the total biomass (36%) and total N content (28%), while the N fixation rate also sharply increased by 75 to 134%, and the amount of N transferred with no root barrier was 1.24–1.42 times greater than that with a mesh barrier. Redundancy analysis (RDA) showed that the crown root dry weight (CRDW) of maize and lateral root number (LRN) of alfalfa showed the strongest associations with N fixation and transfer. Our results highlight the importance of root contact for the enhancement of N fixation and transfer via changes in root morphology in maize/alfalfa intercropping systems, and the overyielding system was achieved via increases in maize growth, at the cost of smaller decreases in alfalfa biomass production. |
536 | _ | _ | |a 252 - Sustainable Plant Production in a Changing Environment (POF3-252) |0 G:(DE-HGF)POF3-252 |c POF3-252 |f POF III |x 0 |
536 | _ | _ | |a 582 - Plant Science (POF3-582) |0 G:(DE-HGF)POF3-582 |c POF3-582 |f POF III |x 1 |
700 | 1 | _ | |a Zheng, Congcong |0 P:(DE-Juel1)180352 |b 1 |e Collaboration author |
700 | 1 | _ | |a Postma, Johannes Auke |0 P:(DE-Juel1)144879 |b 2 |e Contributor |
773 | _ | _ | |a 10.1016/S2095-3119(20)63330-5 |0 PERI:(DE-600)2668746-X |n 8 |p 2240-2254 |t Journal of integrative agriculture |v 20 |y 2020 |x 2095-3119 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/888982/files/1-s2.0-S2095311920633305-main.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:888982 |p openaire |p open_access |p driver |p VDB:Earth_Environment |p VDB |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)180352 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)144879 |
913 | 0 | _ | |a DE-HGF |b Erde und Umwelt |l Terrestrische Umwelt |1 G:(DE-HGF)POF3-250 |0 G:(DE-HGF)POF3-252 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-200 |4 G:(DE-HGF)POF |v Sustainable Plant Production in a Changing Environment |x 0 |
913 | 0 | _ | |a DE-HGF |b Key Technologies |l Key Technologies for the Bioeconomy |1 G:(DE-HGF)POF3-580 |0 G:(DE-HGF)POF3-582 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-500 |4 G:(DE-HGF)POF |v Plant Science |x 1 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-08-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-08-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2020-08-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2020-08-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2020-08-26 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J INTEGR AGR : 2018 |d 2020-08-26 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2020-08-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-08-26 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-08-26 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |d 2020-08-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-08-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-08-26 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IBG-2-20101118 |k IBG-2 |l Pflanzenwissenschaften |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IBG-2-20101118 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|