Journal Article FZJ-2020-05369

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Nitrogen acquisition, fixation and transfer in alfalfa-maize intercrops are increased through root contact and morphology responses tointerspecies competition

 ;  ;

2020
Elsevier Amsterdam [u.a.]

Journal of integrative agriculture 20(8), 2240-2254 () [10.1016/S2095-3119(20)63330-5]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: Nitrogen (N) fixation by legumes and nitrogen transfer to cereals have been considered as important pathways for overyielding and higher N use efficiency in cereal/legume intercropping systems. However, the extent to which root morphology contributes to N fixation and transfer is unclear. A two-factorial greenhouse experiment was conducted to quantify the N fixation, transfer and root morphology characteristics of the maize/alfalfa intercropping system in two consecutive years using the 15N-urea leaf labeling method, and combining two N levels with three root separation techniques. N application could inhibit N fixation and transfer in a maize/alfalfa intercropping system. Irrespective of the N application level, compared with plastic sheet separation (PSS), no separation (NS) and nylon mesh separation (NNS) significantly increased the total biomass (36%) and total N content (28%), while the N fixation rate also sharply increased by 75 to 134%, and the amount of N transferred with no root barrier was 1.24–1.42 times greater than that with a mesh barrier. Redundancy analysis (RDA) showed that the crown root dry weight (CRDW) of maize and lateral root number (LRN) of alfalfa showed the strongest associations with N fixation and transfer. Our results highlight the importance of root contact for the enhancement of N fixation and transfer via changes in root morphology in maize/alfalfa intercropping systems, and the overyielding system was achieved via increases in maize growth, at the cost of smaller decreases in alfalfa biomass production.

Classification:

Contributing Institute(s):
  1. Pflanzenwissenschaften (IBG-2)
Research Program(s):
  1. 252 - Sustainable Plant Production in a Changing Environment (POF3-252) (POF3-252)
  2. 582 - Plant Science (POF3-582) (POF3-582)

Appears in the scientific report 2021
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 ; OpenAccess ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Agriculture, Biology and Environmental Sciences ; Essential Science Indicators ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection ; Zoological Record
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBG > IBG-2
Workflow collections > Public records
Publications database
Open Access

 Record created 2020-12-17, last modified 2023-01-11


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)