000889040 001__ 889040
000889040 005__ 20240712100824.0
000889040 0247_ $$2doi$$a10.5194/acp-20-15227-2020
000889040 0247_ $$2ISSN$$a1680-7316
000889040 0247_ $$2ISSN$$a1680-7324
000889040 0247_ $$2Handle$$a2128/26643
000889040 0247_ $$2altmetric$$aaltmetric:95655051
000889040 0247_ $$2WOS$$aWOS:000599174200004
000889040 037__ $$aFZJ-2020-05410
000889040 082__ $$a550
000889040 1001_ $$0P:(DE-Juel1)171935$$aCharlesworth, Edward J.$$b0$$eCorresponding author
000889040 245__ $$aImpact of Lagrangian transport on lower-stratospheric transport timescales in a climate model
000889040 260__ $$aKatlenburg-Lindau$$bEGU$$c2020
000889040 3367_ $$2DRIVER$$aarticle
000889040 3367_ $$2DataCite$$aOutput Types/Journal article
000889040 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1621516490_537
000889040 3367_ $$2BibTeX$$aARTICLE
000889040 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000889040 3367_ $$00$$2EndNote$$aJournal Article
000889040 520__ $$aWe investigate the impact of model trace gas transport schemes on the representation of transport processes in the upper troposphere and lower stratosphere. Towards this end, the Chemical Lagrangian Model of the Stratosphere (CLaMS) was coupled to the ECHAM/MESSy Atmospheric Chemistry (EMAC) model and results from the two transport schemes (Lagrangian critical Lyapunov scheme and flux-form semi-Lagrangian, respectively) were compared. Advection in CLaMS was driven by the EMAC simulation winds, and thereby the only differences in transport between the two sets of results were caused by differences in the transport schemes. To analyze the timescales of large-scale transport, multiple tropical-surface-emitted tracer pulses were performed to calculate age of air spectra, while smaller-scale transport was analyzed via idealized, radioactively decaying tracers emitted in smaller regions (nine grid cells) within the stratosphere. The results show that stratospheric transport barriers are significantly stronger for Lagrangian EMAC-CLaMS transport due to reduced numerical diffusion. In particular, stronger tracer gradients emerge around the polar vortex, at the subtropical jets, and at the edge of the tropical pipe. Inside the polar vortex, the more diffusive EMAC flux-form semi-Lagrangian transport scheme results in a substantially higher amount of air with ages from 0 to 2 years (up to a factor of 5 higher). In the lowermost stratosphere, mean age of air is much smaller in EMAC, owing to stronger diffusive cross-tropopause transport. Conversely, EMAC-CLaMS shows a summertime lowermost stratosphere age inversion – a layer of older air residing below younger air (an “eave”). This pattern is caused by strong poleward transport above the subtropical jet and is entirely blurred by diffusive cross-tropopause transport in EMAC. Potential consequences from the choice of the transport scheme on chemistry–climate and geoengineering simulations are discussed.
000889040 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0
000889040 536__ $$0G:(DE-Juel1)jicg11_20190501$$aChemisches Lagrangesches Modell der Stratosphäre (CLaMS) (jicg11_20190501)$$cjicg11_20190501$$fChemisches Lagrangesches Modell der Stratosphäre (CLaMS)$$x1
000889040 536__ $$0G:(DE-Juel1)clams-esm_20200501$$aChemical Lagrangian Model of the Stratopshere (CLaMS) (clams-esm_20200501)$$cclams-esm_20200501$$fChemical Lagrangian Model of the Stratopshere (CLaMS)$$x2
000889040 588__ $$aDataset connected to CrossRef
000889040 7001_ $$0P:(DE-Juel1)179468$$aDugstad, Ann-Kristin$$b1$$ufzj
000889040 7001_ $$00000-0001-6414-9726$$aFritsch, Frauke$$b2
000889040 7001_ $$00000-0002-8964-1394$$aJöckel, Patrick$$b3
000889040 7001_ $$0P:(DE-HGF)0$$aPlöger, Felix$$b4
000889040 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-20-15227-2020$$gVol. 20, no. 23, p. 15227 - 15245$$n23$$p15227 - 15245$$tAtmospheric chemistry and physics$$v20$$x1680-7324$$y2020
000889040 8564_ $$uhttps://juser.fz-juelich.de/record/889040/files/invoice_Helmholtz-PUC-2020-122.pdf
000889040 8564_ $$uhttps://juser.fz-juelich.de/record/889040/files/acp-20-15227-2020.pdf$$yOpenAccess
000889040 8767_ $$8Helmholtz-PUC-2020-122$$92020-12-23$$d2021-01-05$$eAPC$$jZahlung erfolgt$$zBelegnr. 1200161460
000889040 909CO $$ooai:juser.fz-juelich.de:889040$$pdnbdelivery$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire
000889040 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171935$$aForschungszentrum Jülich$$b0$$kFZJ
000889040 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179468$$aForschungszentrum Jülich$$b1$$kFZJ
000889040 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000889040 9132_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000889040 9141_ $$y2020
000889040 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-03
000889040 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-03
000889040 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000889040 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2018$$d2020-09-03
000889040 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2018$$d2020-09-03
000889040 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-03
000889040 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-03
000889040 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-03
000889040 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-03
000889040 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-03
000889040 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000889040 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2020-09-03
000889040 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-03
000889040 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-03
000889040 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-03
000889040 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-03
000889040 920__ $$lyes
000889040 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000889040 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000889040 9201_ $$0I:(DE-Juel1)NIC-20090406$$kNIC$$lJohn von Neumann - Institut für Computing$$x2
000889040 9801_ $$aAPC
000889040 9801_ $$aFullTexts
000889040 980__ $$ajournal
000889040 980__ $$aVDB
000889040 980__ $$aI:(DE-Juel1)IEK-7-20101013
000889040 980__ $$aI:(DE-82)080012_20140620
000889040 980__ $$aI:(DE-Juel1)NIC-20090406
000889040 980__ $$aAPC
000889040 980__ $$aUNRESTRICTED
000889040 981__ $$aI:(DE-Juel1)ICE-4-20101013