000889074 001__ 889074
000889074 005__ 20240711085558.0
000889074 0247_ $$2doi$$a10.1111/jace.17582
000889074 0247_ $$2ISSN$$a0002-7820
000889074 0247_ $$2ISSN$$a1551-2916
000889074 0247_ $$2Handle$$a2128/27162
000889074 0247_ $$2WOS$$aWOS:000599727500001
000889074 037__ $$aFZJ-2021-00010
000889074 082__ $$a660
000889074 1001_ $$0P:(DE-Juel1)176279$$aBadie, Sylvain$$b0$$eCorresponding author
000889074 245__ $$aSynthesis, sintering, and effect of surface roughness on oxidation of submicron Ti 2 AlC ceramics
000889074 260__ $$aWesterville, Ohio$$bSoc.$$c2021
000889074 3367_ $$2DRIVER$$aarticle
000889074 3367_ $$2DataCite$$aOutput Types/Journal article
000889074 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1648127754_25708
000889074 3367_ $$2BibTeX$$aARTICLE
000889074 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000889074 3367_ $$00$$2EndNote$$aJournal Article
000889074 520__ $$aSubmicron Ti2AlC MAX phase powder was synthesized by molten salt shielded synthesis (MS3) using a Ti:Al:C molar ratio of 2:1:0.9 at a process temperature of 1000°C for 5  hours. The synthesized powder presented a mean particle size of ~0.9 µm and a purity of 91 wt. % Ti2AlC, containing 6 wt. % Ti3AlC2. The Ti2AlC powder was sintered by pressureless sintering, achieving a maximal relative density of 90%, hence field‐assisted sintering technology/spark plasma sintering was used to enhance densification. The fine‐grained microstructure was preserved, and phase purity of Ti2AlC was unaltered in the latter case, with a relative density of 98.5%. Oxidation was performed at 1200°C for 50 hours in static air of dense monolithic Ti2AlC with different surface finish, (polished, ground and sandblasted) which resulted in the formation of an approx. 8 µm thin aluminum oxide (Al2O3) layer decorated with titanium dioxide (rutile, TiO2) colonies. Surface quality had no influence on Al2O3 scale thickness, but the amount and size of TiO2 crystals increased with surface roughness. A phenomenon of rumpling of the thermally grown oxide (TGO) was observed and a model to estimate the extent of deformation is proposed.
000889074 536__ $$0G:(DE-HGF)POF4-1241$$a1241 - Gas turbines (POF4-124)$$cPOF4-124$$fPOF IV$$x0
000889074 588__ $$aDataset connected to CrossRef
000889074 7001_ $$0P:(DE-Juel1)171462$$aDash, Apurv$$b1
000889074 7001_ $$0P:(DE-Juel1)159368$$aSohn, Yoo Jung$$b2$$ufzj
000889074 7001_ $$0P:(DE-Juel1)129670$$aVaßen, Robert$$b3
000889074 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b4
000889074 7001_ $$0P:(DE-Juel1)162271$$aGonzalez‐Julian, Jesus$$b5
000889074 773__ $$0PERI:(DE-600)2008170-4$$a10.1111/jace.17582$$gp. jace.17582$$n4$$p1669-1688$$tJournal of the American Ceramic Society$$v104$$x1551-2916$$y2021
000889074 8564_ $$uhttps://juser.fz-juelich.de/record/889074/files/jace.17582.pdf$$yOpenAccess
000889074 8767_ $$d2021-01-04$$eHybrid-OA$$jDEAL$$lDEAL: Wiley
000889074 909CO $$ooai:juser.fz-juelich.de:889074$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000889074 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176279$$aForschungszentrum Jülich$$b0$$kFZJ
000889074 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171462$$aForschungszentrum Jülich$$b1$$kFZJ
000889074 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159368$$aForschungszentrum Jülich$$b2$$kFZJ
000889074 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129670$$aForschungszentrum Jülich$$b3$$kFZJ
000889074 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b4$$kFZJ
000889074 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162271$$aForschungszentrum Jülich$$b5$$kFZJ
000889074 9131_ $$0G:(DE-HGF)POF4-124$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1241$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vHochtemperaturtechnologien$$x0
000889074 9130_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000889074 9141_ $$y2021
000889074 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-29
000889074 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-29
000889074 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-08-29
000889074 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000889074 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-29
000889074 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ AM CERAM SOC : 2018$$d2020-08-29
000889074 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-08-29$$wger
000889074 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-29
000889074 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-29
000889074 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-29
000889074 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000889074 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-29
000889074 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-08-29
000889074 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-29
000889074 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-08-29$$wger
000889074 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-29
000889074 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000889074 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x1
000889074 9801_ $$aAPC
000889074 9801_ $$aFullTexts
000889074 980__ $$ajournal
000889074 980__ $$aVDB
000889074 980__ $$aI:(DE-Juel1)IEK-1-20101013
000889074 980__ $$aI:(DE-82)080011_20140620
000889074 980__ $$aAPC
000889074 980__ $$aUNRESTRICTED
000889074 981__ $$aI:(DE-Juel1)IMD-2-20101013