001     889212
005     20240712113235.0
024 7 _ |a 10.1002/aenm.202002926
|2 doi
024 7 _ |a 1614-6832
|2 ISSN
024 7 _ |a 1614-6840
|2 ISSN
024 7 _ |a 2128/27308
|2 Handle
024 7 _ |a altmetric:97464812
|2 altmetric
024 7 _ |a WOS:000604739000001
|2 WOS
037 _ _ |a FZJ-2021-00118
082 _ _ |a 050
100 1 _ |a Liu, Chang
|0 P:(DE-Juel1)173820
|b 0
|e Corresponding author
245 _ _ |a Exploring the Interface of Skin‐Layered Titanium Fibers for Electrochemical Water Splitting
260 _ _ |a Weinheim
|c 2021
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1615200970_5513
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Water electrolysis is the key to a decarbonized energy system, as it enables the conversion and storage of renewably generated intermittent electricity in the form of hydrogen. However, reliability challenges arising from titanium‐based porous transport layers (PTLs) have hitherto restricted the deployment of next‐generation water‐splitting devices. Here, it is shown for the first time how PTLs can be adapted so that their interface remains well protected and resistant to corrosion across ≈4000 h under real electrolysis conditions. It is also demonstrated that the malfunctioning of unprotected PTLs is a result triggered by additional fatal degradation mechanisms over the anodic catalyst layer beyond the impacts expected from iridium oxide stability. Now, superior durability and efficiency in water electrolyzers can be achieved over extended periods of operation with less‐expensive PTLs with proper protection, which can be explained by the detailed reconstruction of the interface between the different elements, materials, layers, and components presented in this work.
536 _ _ |a 134 - Plasma-Wand-Wechselwirkung (POF4-134)
|0 G:(DE-HGF)POF4-134
|c POF4-134
|x 0
|f POF IV
536 _ _ |a 123 - Chemische Energieträger (POF4-123)
|0 G:(DE-HGF)POF4-123
|c POF4-123
|x 1
|f POF IV
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Shviro, Meital
|0 P:(DE-Juel1)165174
|b 1
700 1 _ |a Gago, Aldo S.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Zaccarine, Sarah F.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Bender, Guido
|0 P:(DE-Juel1)172758
|b 4
700 1 _ |a Gazdzicki, Pawel
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Morawietz, Tobias
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Biswas, Indro
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Rasinski, Marcin
|0 P:(DE-Juel1)162160
|b 8
|e Corresponding author
700 1 _ |a Everwand, Andreas
|0 P:(DE-Juel1)169432
|b 9
700 1 _ |a Schierholz, Roland
|0 P:(DE-Juel1)161348
|b 10
700 1 _ |a Pfeilsticker, Jason
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Müller, Martin
|0 P:(DE-Juel1)129892
|b 12
700 1 _ |a Lopes, Pietro P.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 14
700 1 _ |a Pivovar, Bryan
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Pylypenko, Svitlana
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Friedrich, K. Andreas
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Lehnert, Werner
|0 P:(DE-Juel1)129883
|b 18
700 1 _ |a Carmo, Marcelo
|0 P:(DE-Juel1)145276
|b 19
|e Corresponding author
773 _ _ |a 10.1002/aenm.202002926
|g p. 2002926 -
|0 PERI:(DE-600)2594556-7
|n 8
|p 2002926
|t Advanced energy materials
|v 11
|y 2021
|x 1614-6840
856 4 _ |u https://juser.fz-juelich.de/record/889212/files/Invoice-5601512.pdf
856 4 _ |u https://juser.fz-juelich.de/record/889212/files/Invoice_S47XFS2CT.pdf
856 4 _ |u https://juser.fz-juelich.de/record/889212/files/Invoice_SVS2G16YZ.pdf
856 4 _ |u https://juser.fz-juelich.de/record/889212/files/document.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/889212/files/Postprint_RASINSKI.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/889212/files/aenm.202002926.pdf
909 C O |o oai:juser.fz-juelich.de:889212
|p openaire
|p open_access
|p OpenAPC
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)173820
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-Juel1)173820
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)165174
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)162160
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)169432
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)161348
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)129892
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 14
|6 P:(DE-Juel1)156123
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 18
|6 P:(DE-Juel1)129883
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 18
|6 P:(DE-Juel1)129883
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 19
|6 P:(DE-Juel1)145276
913 0 _ |a DE-HGF
|b Energie
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-134
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Electrolysis and Hydrogen
|x 0
913 0 _ |a DE-HGF
|b Energie
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Fuel Cells
|x 1
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Fusion
|1 G:(DE-HGF)POF4-130
|0 G:(DE-HGF)POF4-134
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Plasma-Wand-Wechselwirkung
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|x 1
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-08-27
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-08-27
915 _ _ |a IF >= 20
|0 StatID:(DE-HGF)9920
|2 StatID
|b ADV ENERGY MATER : 2018
|d 2020-08-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV ENERGY MATER : 2018
|d 2020-08-27
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2020-08-27
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-08-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-08-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-27
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-14-20191129
|k IEK-14
|l Elektrochemische Verfahrenstechnik
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 1
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 2
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-14-20191129
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IET-4-20191129
981 _ _ |a I:(DE-Juel1)IET-1-20110218
981 _ _ |a I:(DE-Juel1)IFN-1-20101013
981 _ _ |a I:(DE-Juel1)IET-4-20191129
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21