Preprint FZJ-2021-00275

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Stimulus transformation into motor action: dynamic graph analysis reveals a posterior-to-anterior shift in brain network communication of older subjects

 ;  ;  ;  ;

2020

000, 000 pp. () [10.1101/2020.02.26.966325]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: Cognitive performance slows down with increasing age. This includes cognitive processes that are essential for the performance of a motor act, such as the slowing down in response to an external stimulus. The objective of this study was to identify aging-associated functional changes in the brain networks that are involved in the transformation of external stimuli into motor action. To investigate this topic, we employed dynamic graphs based on phase-locking of Electroencephalography signals recorded from healthy younger and older subjects while performing a simple visually-cued finger-tapping task. The network analysis yielded specific age-related network structures varying in time in the low frequencies (2-7 Hz), which are closely connected to stimulus processing, movement initiation and execution in both age groups. The networks in older subjects, however, contained several additional, particularly interhemispheric, connections and showed an overall increased coupling density. Cluster analyses revealed reduced variability of the subnetworks in older subjects, particularly during movement preparation. In younger subjects, occipital, parietal, sensorimotor and central regions were - temporally arranged in this order - heavily involved in hub nodes. Whereas in older subjects, a hub in frontal regions preceded the noticeably delayed occurrence of sensorimotor hubs, indicating different neural information processing in older subjects.All observed changes in brain network organization, which are based on neural synchronization in the low frequencies, provide a possible neural mechanism underlying previous fMRI data, which report an overactivation, especially in the prefrontal and pre-motor areas, associated with a loss of hemispheric lateralization in older subjects.


Contributing Institute(s):
  1. Kognitive Neurowissenschaften (INM-3)
Research Program(s):
  1. 572 - (Dys-)function and Plasticity (POF3-572) (POF3-572)

Appears in the scientific report 2020
Database coverage:
OpenAccess
Click to display QR Code for this record

The record appears in these collections:
Institutssammlungen > INM > INM-3
Dokumenttypen > Berichte > Vorabdrucke
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2021-01-15, letzte Änderung am 2021-01-27


OpenAccess:
Volltext herunterladen PDF
Externer link:
Volltext herunterladenFulltext by OpenAccess repository
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)