000889792 001__ 889792
000889792 005__ 20240712113027.0
000889792 0247_ $$2doi$$a10.1002/adma.202006390
000889792 0247_ $$2ISSN$$a0935-9648
000889792 0247_ $$2ISSN$$a1521-4095
000889792 0247_ $$2Handle$$a2128/29279
000889792 0247_ $$2altmetric$$aaltmetric:97857214
000889792 0247_ $$2pmid$$apmid:33448100
000889792 0247_ $$2WOS$$aWOS:000607520100001
000889792 037__ $$aFZJ-2021-00405
000889792 041__ $$aEnglish
000889792 082__ $$a660
000889792 1001_ $$0P:(DE-Juel1)174311$$aXie, Qingguang$$b0
000889792 245__ $$aControllable Capillary Assembly of Magnetic Ellipsoidal Janus Particles into Tunable Rings, Chains and Hexagonal Lattices
000889792 260__ $$aWeinheim$$bWiley-VCH$$c2021
000889792 3367_ $$2DRIVER$$aarticle
000889792 3367_ $$2DataCite$$aOutput Types/Journal article
000889792 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1638447813_16994
000889792 3367_ $$2BibTeX$$aARTICLE
000889792 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000889792 3367_ $$00$$2EndNote$$aJournal Article
000889792 520__ $$aColloidal assembly at fluid interfaces has a great potential for the bottom‐up fabrication of novel structured materials. However, challenges remain in realizing controllable and tunable assembly of particles into diverse structures. Herein, the capillary assembly of magnetic ellipsoidal Janus particles at a fluid–fluid interface is reported. Depending on their tilt angle, that is, the angle the particle main axis forms with the fluid interface, these particles deform the interface and generate capillary dipoles or hexapoles. Driven by capillary interactions, multiple particles thus assemble into chain‐, hexagonal‐lattice‐, and ring‐like structures, which can be actively controlled by applying an external magnetic field. A field‐strength phase diagram is predicted in which various structures are present as stable states. Owing to the diversity, controllability, and tunability of assembled structures, magnetic ellipsoidal Janus particles at fluid interfaces could therefore serve as versatile building blocks for novel materials.
000889792 536__ $$0G:(DE-HGF)POF4-1215$$a1215 - Simulations, Theory, Optics, and Analytics (STOA) (POF4-121)$$cPOF4-121$$fPOF IV$$x0
000889792 536__ $$0G:(GEPRIS)422916531$$aDFG project 422916531 - Adaptive und schaltbare Grenzflächen basierend auf strukturierten Kolloiden $$c422916531$$x1
000889792 588__ $$aDataset connected to CrossRef
000889792 7001_ $$0P:(DE-Juel1)167472$$aHarting, Jens$$b1$$eCorresponding author$$ufzj
000889792 773__ $$0PERI:(DE-600)1474949-x$$a10.1002/adma.202006390$$gp. 2006390 -$$n8$$p2006390 -$$tAdvanced materials$$v33$$x1521-4095$$y2021
000889792 8564_ $$uhttps://juser.fz-juelich.de/record/889792/files/adma.202006390.pdf$$yOpenAccess
000889792 8767_ $$d2021-01-19$$eHybrid-OA$$jDEAL$$lDEAL: Wiley
000889792 909CO $$ooai:juser.fz-juelich.de:889792$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000889792 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174311$$aForschungszentrum Jülich$$b0$$kFZJ
000889792 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167472$$aForschungszentrum Jülich$$b1$$kFZJ
000889792 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1215$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
000889792 9141_ $$y2021
000889792 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-10-13
000889792 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-10-13
000889792 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-10-13
000889792 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000889792 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-10-13
000889792 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-10-13$$wger
000889792 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-10-13
000889792 915__ $$0StatID:(DE-HGF)9925$$2StatID$$aIF >= 25$$bADV MATER : 2018$$d2020-10-13
000889792 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-10-13
000889792 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000889792 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV MATER : 2018$$d2020-10-13
000889792 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-10-13
000889792 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-10-13$$wger
000889792 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-10-13
000889792 920__ $$lyes
000889792 9201_ $$0I:(DE-Juel1)IEK-11-20140314$$kIEK-11$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x0
000889792 9801_ $$aAPC
000889792 9801_ $$aFullTexts
000889792 980__ $$ajournal
000889792 980__ $$aVDB
000889792 980__ $$aUNRESTRICTED
000889792 980__ $$aI:(DE-Juel1)IEK-11-20140314
000889792 980__ $$aAPC
000889792 981__ $$aI:(DE-Juel1)IET-2-20140314