Home > Publications database > First-principles studies in Mg-based hydrogen storage Materials: A review > print |
001 | 889866 | ||
005 | 20240709082103.0 | ||
024 | 7 | _ | |a 10.1016/j.energy.2020.118959 |2 doi |
024 | 7 | _ | |a 0360-5442 |2 ISSN |
024 | 7 | _ | |a 1873-6785 |2 ISSN |
024 | 7 | _ | |a 2128/27027 |2 Handle |
024 | 7 | _ | |a WOS:000591605200002 |2 WOS |
037 | _ | _ | |a FZJ-2021-00474 |
041 | _ | _ | |a English |
082 | _ | _ | |a 600 |
100 | 1 | _ | |a Xie, XiuBo |0 0000-0003-1267-0776 |b 0 |e Corresponding author |
245 | _ | _ | |a First-principles studies in Mg-based hydrogen storage Materials: A review |
260 | _ | _ | |a Amsterdam [u.a.] |c 2020 |b Elsevier Science |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1611587526_28078 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Hydrogen storage efficiency is essential for a booming clean hydrogen energy economy. Mg-based hydrogen storage materials have been intensively investigated due to their advantages of high theoretical storage capacity, satisfactory reversibility and natural abundance. However, the high thermal stability of Mg–H bonds leads to a high dehydrogenation temperature and sluggish kinetics. The construction of models for examining the interactions of hydrogen with Mg(MgH2) and the catalytic mechanism of catalyst additives is important. Therefore, this paper reviews recent advances in modelling and focuses on first-principles calculation applications in hydrogen adsorption, dissociation and diffusion energy calculations on Mg(0001) and high indexed Mg(103) surfaces with element doping, strain and alloy additives. The applications of first-principles calculations on the particle size and dehydrogenation of MgH2 are also reviewed. |
536 | _ | _ | |a 131 - Electrochemical Storage (POF3-131) |0 G:(DE-HGF)POF3-131 |c POF3-131 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Hou, Chuanxin |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Chen, Chunguang |0 P:(DE-Juel1)172735 |b 2 |
700 | 1 | _ | |a Sun, Xueqin |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Pang, Yu |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Zhang, Yuping |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Yu, Ronghai |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Wang, Bing |0 P:(DE-Juel1)186909 |b 7 |
700 | 1 | _ | |a Du, Wei |0 P:(DE-HGF)0 |b 8 |e Corresponding author |
773 | _ | _ | |a 10.1016/j.energy.2020.118959 |g Vol. 211, p. 118959 - |0 PERI:(DE-600)2019804-8 |p 118959 - |t Energy |v 211 |y 2020 |x 0360-5442 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/889866/files/manuscript-revised-post%20print.pdf |y Published on 2020-09-30. Available in OpenAccess from 2022-09-30. |
909 | C | O | |o oai:juser.fz-juelich.de:889866 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)172735 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)186909 |
913 | 1 | _ | |a DE-HGF |b Energie |l Speicher und vernetzte Infrastrukturen |1 G:(DE-HGF)POF3-130 |0 G:(DE-HGF)POF3-131 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-100 |4 G:(DE-HGF)POF |v Electrochemical Storage |x 0 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-09-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-09-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2020-09-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2020-09-09 |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ENERGY : 2018 |d 2020-09-09 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2020-09-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-09-09 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2020-09-09 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b ENERGY : 2018 |d 2020-09-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-09-09 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2020-09-09 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-09-09 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-9-20110218 |k IEK-9 |l Grundlagen der Elektrochemie |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)JCNS-2-20110106 |k JCNS-2 |l Streumethoden |x 1 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-9-20110218 |
980 | _ | _ | |a I:(DE-Juel1)JCNS-2-20110106 |
981 | _ | _ | |a I:(DE-Juel1)IET-1-20110218 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|