000890098 001__ 890098
000890098 005__ 20210208142354.0
000890098 0247_ $$2doi$$a10.1038/s41598-020-75710-5
000890098 0247_ $$2Handle$$a2128/27004
000890098 0247_ $$2altmetric$$aaltmetric:93696247
000890098 0247_ $$2pmid$$a33139783
000890098 0247_ $$2WOS$$aWOS:000589616100006
000890098 037__ $$aFZJ-2021-00687
000890098 082__ $$a600
000890098 1001_ $$0P:(DE-HGF)0$$aKhaki, M.$$b0$$eCorresponding author
000890098 245__ $$aMulti-mission satellite remote sensing data for improving land hydrological models via data assimilation
000890098 260__ $$a[London]$$bMacmillan Publishers Limited, part of Springer Nature$$c2020
000890098 3367_ $$2DRIVER$$aarticle
000890098 3367_ $$2DataCite$$aOutput Types/Journal article
000890098 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1611573318_25895
000890098 3367_ $$2BibTeX$$aARTICLE
000890098 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890098 3367_ $$00$$2EndNote$$aJournal Article
000890098 520__ $$aSatellite remote sensing offers valuable tools to study Earth and hydrological processes and improve land surface models. This is essential to improve the quality of model predictions, which are affected by various factors such as erroneous input data, the uncertainty of model forcings, and parameter uncertainties. Abundant datasets from multi-mission satellite remote sensing during recent years have provided an opportunity to improve not only the model estimates but also model parameters through a parameter estimation process. This study utilises multiple datasets from satellite remote sensing including soil moisture from Soil Moisture and Ocean Salinity Mission and Advanced Microwave Scanning Radiometer Earth Observing System, terrestrial water storage from the Gravity Recovery And Climate Experiment, and leaf area index from Advanced Very-High-Resolution Radiometer to estimate model parameters. This is done using the recently proposed assimilation method, unsupervised weak constrained ensemble Kalman filter (UWCEnKF). UWCEnKF applies a dual scheme to separately update the state and parameters using two interactive EnKF filters followed by a water balance constraint enforcement. The performance of multivariate data assimilation is evaluated against various independent data over different time periods over two different basins including the Murray–Darling and Mississippi basins. Results indicate that simultaneous assimilation of multiple satellite products combined with parameter estimation strongly improves model predictions compared with single satellite products and/or state estimation alone. This improvement is achieved not only during the parameter estimation period (∼ 32% groundwater RMSE reduction and soil moisture correlation increase from ∼ 0.66 to ∼ 0.85) but also during the forecast period (∼ 14% groundwater RMSE reduction and soil moisture correlation increase from ∼ 0.69 to ∼ 0.78) due to the effective impacts of the approach on both state and parameters.
000890098 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000890098 588__ $$aDataset connected to CrossRef
000890098 7001_ $$0P:(DE-HGF)0$$aHan, S. C.$$b1
000890098 7001_ $$0P:(DE-Juel1)138662$$aHendricks-Franssen, Harrie-Jan$$b2
000890098 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-020-75710-5$$gVol. 10, no. 1, p. 18791$$n1$$p18791$$tScientific reports$$v10$$x2045-2322$$y2020
000890098 8564_ $$uhttps://juser.fz-juelich.de/record/890098/files/2020_Khaki_etal_ScientificReports.pdf$$yOpenAccess
000890098 909CO $$ooai:juser.fz-juelich.de:890098$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000890098 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138662$$aForschungszentrum Jülich$$b2$$kFZJ
000890098 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000890098 9141_ $$y2020
000890098 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000890098 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-29
000890098 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-29
000890098 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-08-29
000890098 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-08-29
000890098 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-29
000890098 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2020-08-29
000890098 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2018$$d2020-08-29
000890098 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-08-29
000890098 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-08-29
000890098 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-29
000890098 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-08-29
000890098 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-29
000890098 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-29
000890098 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000890098 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-29
000890098 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-08-29
000890098 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-08-29
000890098 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-29
000890098 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-08-29
000890098 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-29
000890098 920__ $$lyes
000890098 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000890098 980__ $$ajournal
000890098 980__ $$aVDB
000890098 980__ $$aUNRESTRICTED
000890098 980__ $$aI:(DE-Juel1)IBG-3-20101118
000890098 9801_ $$aFullTexts