Journal Article FZJ-2021-00687

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Multi-mission satellite remote sensing data for improving land hydrological models via data assimilation

 ;  ;

2020
Macmillan Publishers Limited, part of Springer Nature [London]

Scientific reports 10(1), 18791 () [10.1038/s41598-020-75710-5]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: Satellite remote sensing offers valuable tools to study Earth and hydrological processes and improve land surface models. This is essential to improve the quality of model predictions, which are affected by various factors such as erroneous input data, the uncertainty of model forcings, and parameter uncertainties. Abundant datasets from multi-mission satellite remote sensing during recent years have provided an opportunity to improve not only the model estimates but also model parameters through a parameter estimation process. This study utilises multiple datasets from satellite remote sensing including soil moisture from Soil Moisture and Ocean Salinity Mission and Advanced Microwave Scanning Radiometer Earth Observing System, terrestrial water storage from the Gravity Recovery And Climate Experiment, and leaf area index from Advanced Very-High-Resolution Radiometer to estimate model parameters. This is done using the recently proposed assimilation method, unsupervised weak constrained ensemble Kalman filter (UWCEnKF). UWCEnKF applies a dual scheme to separately update the state and parameters using two interactive EnKF filters followed by a water balance constraint enforcement. The performance of multivariate data assimilation is evaluated against various independent data over different time periods over two different basins including the Murray–Darling and Mississippi basins. Results indicate that simultaneous assimilation of multiple satellite products combined with parameter estimation strongly improves model predictions compared with single satellite products and/or state estimation alone. This improvement is achieved not only during the parameter estimation period (∼ 32% groundwater RMSE reduction and soil moisture correlation increase from ∼ 0.66 to ∼ 0.85) but also during the forecast period (∼ 14% groundwater RMSE reduction and soil moisture correlation increase from ∼ 0.69 to ∼ 0.78) due to the effective impacts of the approach on both state and parameters.

Classification:

Contributing Institute(s):
  1. Agrosphäre (IBG-3)
Research Program(s):
  1. 255 - Terrestrial Systems: From Observation to Prediction (POF3-255) (POF3-255)

Appears in the scientific report 2020
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; DOAJ Seal ; Ebsco Academic Search ; Essential Science Indicators ; Fees ; IF < 5 ; JCR ; PubMed Central ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection ; Zoological Record
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBG > IBG-3
Workflow collections > Public records
Publications database
Open Access

 Record created 2021-01-24, last modified 2021-02-08


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)