000890139 001__ 890139
000890139 005__ 20240712113017.0
000890139 0247_ $$2doi$$a10.1016/j.jcrysgro.2010.12.019
000890139 0247_ $$2ISSN$$a0022-0248
000890139 0247_ $$2ISSN$$a1873-5002
000890139 0247_ $$2WOS$$aWOS:000286853400011
000890139 037__ $$aFZJ-2021-00728
000890139 082__ $$a540
000890139 1001_ $$0P:(DE-Juel1)145344$$aKunz, T.$$b0$$eCorresponding author
000890139 245__ $$aMicro-Raman mapping on layers for crystalline silicon thin-film solar cells
000890139 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2011
000890139 3367_ $$2DRIVER$$aarticle
000890139 3367_ $$2DataCite$$aOutput Types/Journal article
000890139 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1614609036_9773
000890139 3367_ $$2BibTeX$$aARTICLE
000890139 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890139 3367_ $$00$$2EndNote$$aJournal Article
000890139 520__ $$aMicro-Raman mappings have been used for characterization of our layers system developed for thin-film silicon solar cells. For the cubic SiC barrier layer a preferential orientation of the grains in 〈1 1 1〉 direction normal to the substrate was revealed. A high density of stacking faults resulted in the splitting of transversal optical (TO)-phonon modes, usually only observed in several non-cubic SiC polytypes. Within the silicon layers, which were obtained by zone melting recrystallization (ZMR) and subsequent epitaxial growth, a high residual stress of about 625 MPa was measured near the boundary towards the SiC layer. Outside of this boundary no residual stress could be detected, in spite of commonly found twin boundaries. Thus the main origin of residual stress in the silicon layers is due to the different expansion coefficients of the respective layers, while grain boundaries have no dominant effect.
000890139 536__ $$0G:(DE-HGF)POF3-121$$a121 - Solar cells of the next generation (POF3-121)$$cPOF3-121$$fPOF III$$x0
000890139 588__ $$aDataset connected to CrossRef
000890139 7001_ $$0P:(DE-HGF)0$$aHessmann, M. T.$$b1
000890139 7001_ $$0P:(DE-HGF)0$$aMeidel, B.$$b2
000890139 7001_ $$0P:(DE-HGF)0$$aBrabec, C. J.$$b3
000890139 773__ $$0PERI:(DE-600)1466514-1$$a10.1016/j.jcrysgro.2010.12.019$$gVol. 314, no. 1, p. 53 - 57$$n1$$p53 - 57$$tJournal of crystal growth$$v314$$x0022-0248$$y2011
000890139 8564_ $$uhttps://juser.fz-juelich.de/record/890139/files/1-s2.0-S0022024810011802-main.pdf$$yRestricted
000890139 909CO $$ooai:juser.fz-juelich.de:890139$$pVDB
000890139 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b3$$kFZJ
000890139 9131_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0
000890139 9132_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1214$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
000890139 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-08-25$$wger
000890139 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CRYST GROWTH : 2018$$d2020-08-25
000890139 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-25
000890139 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-25
000890139 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-25
000890139 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-25
000890139 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-25
000890139 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2020-08-25
000890139 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-25
000890139 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-08-25
000890139 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-25
000890139 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-25
000890139 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-25
000890139 920__ $$lyes
000890139 9201_ $$0I:(DE-Juel1)IEK-11-20140314$$kIEK-11$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x0
000890139 980__ $$ajournal
000890139 980__ $$aVDB
000890139 980__ $$aI:(DE-Juel1)IEK-11-20140314
000890139 980__ $$aUNRESTRICTED
000890139 981__ $$aI:(DE-Juel1)IET-2-20140314