001     890291
005     20240712084524.0
024 7 _ |a 10.1002/solr.202000501
|2 doi
024 7 _ |a 2128/27096
|2 Handle
024 7 _ |a WOS:000587744700001
|2 WOS
037 _ _ |a FZJ-2021-00872
082 _ _ |a 600
100 1 _ |a Yao, Zhirong
|0 P:(DE-Juel1)176774
|b 0
245 _ _ |a Influence of Oxygen on Sputtered Titanium‐Doped Indium Oxide Thin Films and Their Application in Silicon Heterojunction Solar Cells
260 _ _ |a Weinheim
|c 2021
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1611935270_11739
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a One of the challenges in fabricating high‐performance n‐type silicon heterojunction (SHJ) solar cells is developing a high‐quality transparent conductive oxide (TCO) electrode. Herein, the development and application of low‐temperature sputtered titanium‐doped indium oxide (ITiO) in n‐type, rear junction SHJ solar cells as a function of the oxygen flow ratio is presented. The microstructure, morphology, and optoelectronic properties are analyzed. The grain size of ITiO thin films decreases rapidly as the oxygen flow ratio is increased. Compared with an indium tin oxide (ITO) thin film, ITiO shows a superior balance in achieving excellent optoelectronic properties by reducing film resistivity but maintaining weak absorption. Higher fill factor is obtained by substituting ITiO for ITO as the front electrode in SHJ solar cells, which is mainly due to the improved carrier transport. Resistivity contributions of front‐side vertical and lateral carrier transport are disclosed by Quokka3 simulation. A champion cell efficiency of 23.81% with ITiO is achieved, which is so far the highest efficiency among the application of ITiO in SHJ solar cells to the best of our knowledge. The study demonstrates that ITiO is a promising TCO candidate for SHJ solar cells.
536 _ _ |a 121 - Photovoltaik und Windenergie (POF4-121)
|0 G:(DE-HGF)POF4-121
|c POF4-121
|x 0
|f POF IV
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Duan, Weiyuan
|0 P:(DE-Juel1)169946
|b 1
|e Corresponding author
700 1 _ |a Steuter, Paul
|0 P:(DE-Juel1)179503
|b 2
|u fzj
700 1 _ |a Hüpkes, Jürgen
|0 P:(DE-Juel1)130252
|b 3
|u fzj
700 1 _ |a Lambertz, Andreas
|0 P:(DE-Juel1)130263
|b 4
|u fzj
700 1 _ |a Bittkau, Karsten
|0 P:(DE-Juel1)130219
|b 5
|u fzj
700 1 _ |a Pomaska, Manuel
|0 P:(DE-Juel1)162141
|b 6
|u fzj
700 1 _ |a Qiu, Depeng
|0 P:(DE-Juel1)173822
|b 7
|u fzj
700 1 _ |a Qiu, Kaifu
|0 P:(DE-Juel1)178049
|b 8
|u fzj
700 1 _ |a Wu, Zhuopeng
|0 P:(DE-Juel1)180286
|b 9
|u fzj
700 1 _ |a Shen, Hui
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Rau, Uwe
|0 P:(DE-Juel1)130285
|b 11
|u fzj
700 1 _ |a Ding, Kaining
|0 P:(DE-Juel1)130233
|b 12
|u fzj
773 _ _ |a 10.1002/solr.202000501
|g Vol. 5, no. 1, p. 2000501 -
|0 PERI:(DE-600)2882014-9
|n 1
|p 2000501 -
|t Solar RRL
|v 5
|y 2021
|x 2367-198X
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/890291/files/Post%20Print.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/890291/files/solr.202000501.pdf
909 C O |o oai:juser.fz-juelich.de:890291
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)176774
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)169946
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)179503
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130252
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130263
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130219
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)162141
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)173822
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)178049
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)180286
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)130285
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)130233
913 0 _ |a DE-HGF
|b Energie
|l Erneuerbare Energien
|1 G:(DE-HGF)POF3-120
|0 G:(DE-HGF)POF3-121
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Solar cells of the next generation
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-09-06
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-09-06
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2020-09-06
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-06
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-06
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21