001     890327
005     20240712113117.0
024 7 _ |a 10.1002/aenm.202003738
|2 doi
024 7 _ |a 1614-6832
|2 ISSN
024 7 _ |a 1614-6840
|2 ISSN
024 7 _ |a 2128/27749
|2 Handle
024 7 _ |a altmetric:99066124
|2 altmetric
024 7 _ |a WOS:000612637200001
|2 WOS
037 _ _ |a FZJ-2021-00893
082 _ _ |a 050
100 1 _ |a Klein, Sven
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Understanding the Outstanding High‐Voltage Performance of NCM523||Graphite Lithium Ion Cells after Elimination of Ethylene Carbonate Solvent from Conventional Electrolyte
260 _ _ |a Weinheim
|c 2021
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1620302758_24838
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The increase of specific energy of current Li ion batteries via further increase of the cell voltage, for example, to 4.5 V is typically accompanied by a sudden and rapid capacity fade, known as “rollover” failure. This failure is the result of Li dendrite formation triggered in the course of electrode cross‐talk, that is, dissolution of transition metals (TMs) from the cathode and deposition on the anode. It is shown herein, that the elimination of ethylene carbonate (EC) from a state‐of‐the‐art electrolyte, that is, from 1.0 m LiPF6 in a 3:7 mixture of EC and ethyl methyl carbonate prevents this failure in high‐voltage LiNi0.5Co0.2Mn0.3O2||graphite cells, even without any electrolyte additives. While the oxidative stability on the cathode side is similar in both electrolytes, visible by a decomposition plateau at 5.5 V versus Li|Li+ during charge, the anode side in the EC‐free electrolyte reveals significantly less TM deposits and Li metal dendrites compared to the EC‐based electrolyte. The beneficial effect of EC‐free electrolytes is related to a significantly increased amount of degraded LiPF6 species, which effectively trap dissolved TMs and suppress the effect of detrimental cross‐talk, finally realizing rollover‐free performance under high voltage conditions.
536 _ _ |a 122 - Elektrochemische Energiespeicherung (POF4-122)
|0 G:(DE-HGF)POF4-122
|c POF4-122
|x 0
|f POF IV
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a van Wickeren, Stefan
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Röser, Stephan
|0 P:(DE-Juel1)187078
|b 2
|u fzj
700 1 _ |a Bärmann, Peer
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Borzutzki, Kristina
|0 P:(DE-Juel1)171270
|b 4
|u fzj
700 1 _ |a Heidrich, Bastian
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Börner, Markus
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 7
|e Corresponding author
|u fzj
700 1 _ |a Placke, Tobias
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Kasnatscheew, Johannes
|0 P:(DE-Juel1)171865
|b 9
|e Corresponding author
773 _ _ |a 10.1002/aenm.202003738
|g p. 2003738 -
|0 PERI:(DE-600)2594556-7
|n 14
|p 2003738
|t Advanced energy materials
|v 11
|y 2021
|x 1614-6840
856 4 _ |u https://juser.fz-juelich.de/record/890327/files/aenm.202003738.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:890327
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)187078
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)171270
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)166130
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)171865
913 0 _ |a DE-HGF
|b Energie
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Electrochemical Storage
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-08-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-08-27
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a IF >= 20
|0 StatID:(DE-HGF)9920
|2 StatID
|b ADV ENERGY MATER : 2018
|d 2020-08-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV ENERGY MATER : 2018
|d 2020-08-27
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2020-08-27
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-08-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-08-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-27
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21