000890389 001__ 890389
000890389 005__ 20240708132819.0
000890389 0247_ $$2doi$$a10.1016/j.jeurceramsoc.2020.11.007
000890389 0247_ $$2ISSN$$a0955-2219
000890389 0247_ $$2ISSN$$a1873-619X
000890389 0247_ $$2Handle$$a2128/28047
000890389 0247_ $$2WOS$$aWOS:000613698100006
000890389 037__ $$aFZJ-2021-00922
000890389 082__ $$a660
000890389 1001_ $$0P:(DE-Juel1)176806$$aNur, Khushnuda$$b0$$eCorresponding author$$ufzj
000890389 245__ $$aInfluence of powder characteristics on cold sintering of nano-sized ZnO with density above 99 %
000890389 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2021
000890389 3367_ $$2DRIVER$$aarticle
000890389 3367_ $$2DataCite$$aOutput Types/Journal article
000890389 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1648127687_11907
000890389 3367_ $$2BibTeX$$aARTICLE
000890389 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890389 3367_ $$00$$2EndNote$$aJournal Article
000890389 520__ $$aCold sintering parameters such as, temperature, pressure, aqueous phase, heating rate and dwelling time has been widely discussed in the literature but the role of starting powder with respective microstructure development is mostly overlooked. There is a need for understanding the effect of powder agglomerates and the role of inter particle friction on the densification behavior during cold sintering process. Present study encompasses investigation and optimization of these parameters for ZnO which enabled > 99 % of relative density with grain sizes below 200 nm. Additionally, role of external atmosphere was also studied to investigate its impact on densification during the process. All cold sintering experiments were carried out in a FAST/SPS device for studying aqueous phase evaporation and ensuring the reproducibility of process parameters. Microstructure characterization (scanning and transmission electron microscopy) showed – without any post heat treatment– defect free grain boundary structure opposite to what documented by previous studies.
000890389 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000890389 536__ $$0G:(GEPRIS)274005202$$aSPP 1959: Manipulation of matter controlled by electric and magnetic fields: Towards novel synthesis and processing routes of inorganic materials (274005202)$$c274005202$$x1
000890389 588__ $$aDataset connected to CrossRef
000890389 7001_ $$0P:(DE-Juel1)166597$$aMishra, Tarini Prasad$$b1
000890389 7001_ $$0P:(DE-HGF)0$$aSilva, João Gustavo Pereira da$$b2
000890389 7001_ $$0P:(DE-Juel1)162271$$aGonzalez-Julian, Jesus$$b3
000890389 7001_ $$0P:(DE-Juel1)129591$$aBram, Martin$$b4$$ufzj
000890389 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b5$$ufzj
000890389 773__ $$0PERI:(DE-600)2013983-4$$a10.1016/j.jeurceramsoc.2020.11.007$$gVol. 41, no. 4, p. 2648 - 2662$$n4$$p2648 - 2662$$tJournal of the European Ceramic Society$$v41$$x0955-2219$$y2021
000890389 8564_ $$uhttps://juser.fz-juelich.de/record/890389/files/JUCER%20J%20Europ%20Ceram%20Soc_Nur%20et%20al_Manuscript_revisions%20-%20JUCER.pdf$$yPublished on 2020-11-11. Available in OpenAccess from 2021-11-11.
000890389 8564_ $$uhttps://juser.fz-juelich.de/record/890389/files/JUCER%20J%20Europ%20Ceram%20Soc_Nur%20et%20al_revised%20supplementary%20information%20.pdf$$yPublished on 2020-11-11. Available in OpenAccess from 2021-11-11.
000890389 909CO $$ooai:juser.fz-juelich.de:890389$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000890389 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176806$$aForschungszentrum Jülich$$b0$$kFZJ
000890389 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166597$$aForschungszentrum Jülich$$b1$$kFZJ
000890389 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162271$$aForschungszentrum Jülich$$b3$$kFZJ
000890389 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129591$$aForschungszentrum Jülich$$b4$$kFZJ
000890389 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b5$$kFZJ
000890389 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000890389 9130_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000890389 9141_ $$y2021
000890389 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-26
000890389 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-26
000890389 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-08-26
000890389 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-26
000890389 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000890389 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000890389 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ EUR CERAM SOC : 2018$$d2020-08-26
000890389 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-26
000890389 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-26
000890389 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-26
000890389 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-26
000890389 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-08-26
000890389 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-26
000890389 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-26
000890389 920__ $$lyes
000890389 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000890389 9801_ $$aFullTexts
000890389 980__ $$ajournal
000890389 980__ $$aVDB
000890389 980__ $$aI:(DE-Juel1)IEK-1-20101013
000890389 980__ $$aUNRESTRICTED
000890389 981__ $$aI:(DE-Juel1)IMD-2-20101013