000890413 001__ 890413 000890413 005__ 20240712113251.0 000890413 0247_ $$2doi$$a10.1016/j.ijhydene.2021.01.192 000890413 0247_ $$2ISSN$$a0360-3199 000890413 0247_ $$2ISSN$$a1879-3487 000890413 0247_ $$2Handle$$a2128/27699 000890413 0247_ $$2WOS$$aWOS:000639330400008 000890413 037__ $$aFZJ-2021-00937 000890413 082__ $$a620 000890413 1001_ $$0P:(DE-Juel1)168241$$aLiu, Shuai$$b0 000890413 245__ $$aMechanism of action of polytetrafluoroethylene binder on the performance and durability of high-temperature polymer electrolyte fuel cells 000890413 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2021 000890413 3367_ $$2DRIVER$$aarticle 000890413 3367_ $$2DataCite$$aOutput Types/Journal article 000890413 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1619508689_13765 000890413 3367_ $$2BibTeX$$aARTICLE 000890413 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000890413 3367_ $$00$$2EndNote$$aJournal Article 000890413 520__ $$aIn this work, new insights into impacts of the polytetrafluoroethylene (PTFE) binder on high temperature polymer electrolyte fuel cells (HT-PEFCs) are provided by means of various characterizations and accelerated stress tests. Cathodes with PTFE contents from 0 wt% to 60 wt% were fabricated and compared using electrochemical measurements. The results indicate that the cell with 10 wt% PTFE in the cathode catalyst layer (CCL) shows the best performance due to having the lowest mass transport resistance and cathode protonic resistance. Moreover, cyclic voltammograms show that Pt (100) edge and corner sites are significantly covered by PTFE and phosphate anions when the PTFE content is higher than 25 wt%. Open-circuit and low load-cycling conditions are applied to accelerate degradation processes of the HT-PEFCs. The PTFE binder shows a network structure in the pores of the catalyst layer, which reduces phosphoric acid leaching during the aging tests. In addition, the high binder HT-PEFCs more easily suffer from a mass transport problem, leading to more severe performance degradation. 000890413 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0 000890413 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x1 000890413 588__ $$aDataset connected to CrossRef 000890413 7001_ $$0P:(DE-Juel1)129946$$aWippermann, Klaus$$b1 000890413 7001_ $$0P:(DE-Juel1)129883$$aLehnert, Werner$$b2$$eCorresponding author 000890413 773__ $$0PERI:(DE-600)1484487-4$$a10.1016/j.ijhydene.2021.01.192$$gp. S0360319921003621$$n27$$p14687-14698$$tInternational journal of hydrogen energy$$v46$$x0360-3199$$y2021 000890413 8564_ $$uhttps://juser.fz-juelich.de/record/890413/files/Invoice_OAD0000098660.pdf 000890413 8564_ $$uhttps://juser.fz-juelich.de/record/890413/files/1-s2.0-S0360319921003621-main.pdf$$yOpenAccess 000890413 8767_ $$8OAD0000098660$$92021-02-04$$d2021-02-09$$eHybrid-OA$$jZahlung erfolgt$$zBelegnr. 1200163771 000890413 909CO $$ooai:juser.fz-juelich.de:890413$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire 000890413 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168241$$aForschungszentrum Jülich$$b0$$kFZJ 000890413 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)168241$$aRWTH Aachen$$b0$$kRWTH 000890413 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129946$$aForschungszentrum Jülich$$b1$$kFZJ 000890413 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129883$$aForschungszentrum Jülich$$b2$$kFZJ 000890413 9130_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0 000890413 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0 000890413 9141_ $$y2021 000890413 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-32 000890413 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-32 000890413 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-08-32 000890413 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-32 000890413 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 000890413 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J HYDROGEN ENERG : 2018$$d2020-08-32 000890413 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-32 000890413 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-32 000890413 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000890413 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-32 000890413 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-32 000890413 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-32 000890413 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-32 000890413 920__ $$lyes 000890413 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0 000890413 9801_ $$aAPC 000890413 9801_ $$aFullTexts 000890413 980__ $$ajournal 000890413 980__ $$aVDB 000890413 980__ $$aUNRESTRICTED 000890413 980__ $$aI:(DE-Juel1)IEK-14-20191129 000890413 980__ $$aAPC 000890413 981__ $$aI:(DE-Juel1)IET-4-20191129