000890413 001__ 890413
000890413 005__ 20240712113251.0
000890413 0247_ $$2doi$$a10.1016/j.ijhydene.2021.01.192
000890413 0247_ $$2ISSN$$a0360-3199
000890413 0247_ $$2ISSN$$a1879-3487
000890413 0247_ $$2Handle$$a2128/27699
000890413 0247_ $$2WOS$$aWOS:000639330400008
000890413 037__ $$aFZJ-2021-00937
000890413 082__ $$a620
000890413 1001_ $$0P:(DE-Juel1)168241$$aLiu, Shuai$$b0
000890413 245__ $$aMechanism of action of polytetrafluoroethylene binder on the performance and durability of high-temperature polymer electrolyte fuel cells
000890413 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2021
000890413 3367_ $$2DRIVER$$aarticle
000890413 3367_ $$2DataCite$$aOutput Types/Journal article
000890413 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1619508689_13765
000890413 3367_ $$2BibTeX$$aARTICLE
000890413 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890413 3367_ $$00$$2EndNote$$aJournal Article
000890413 520__ $$aIn this work, new insights into impacts of the polytetrafluoroethylene (PTFE) binder on high temperature polymer electrolyte fuel cells (HT-PEFCs) are provided by means of various characterizations and accelerated stress tests. Cathodes with PTFE contents from 0 wt% to 60 wt% were fabricated and compared using electrochemical measurements. The results indicate that the cell with 10 wt% PTFE in the cathode catalyst layer (CCL) shows the best performance due to having the lowest mass transport resistance and cathode protonic resistance. Moreover, cyclic voltammograms show that Pt (100) edge and corner sites are significantly covered by PTFE and phosphate anions when the PTFE content is higher than 25 wt%. Open-circuit and low load-cycling conditions are applied to accelerate degradation processes of the HT-PEFCs. The PTFE binder shows a network structure in the pores of the catalyst layer, which reduces phosphoric acid leaching during the aging tests. In addition, the high binder HT-PEFCs more easily suffer from a mass transport problem, leading to more severe performance degradation.
000890413 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000890413 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x1
000890413 588__ $$aDataset connected to CrossRef
000890413 7001_ $$0P:(DE-Juel1)129946$$aWippermann, Klaus$$b1
000890413 7001_ $$0P:(DE-Juel1)129883$$aLehnert, Werner$$b2$$eCorresponding author
000890413 773__ $$0PERI:(DE-600)1484487-4$$a10.1016/j.ijhydene.2021.01.192$$gp. S0360319921003621$$n27$$p14687-14698$$tInternational journal of hydrogen energy$$v46$$x0360-3199$$y2021
000890413 8564_ $$uhttps://juser.fz-juelich.de/record/890413/files/Invoice_OAD0000098660.pdf
000890413 8564_ $$uhttps://juser.fz-juelich.de/record/890413/files/1-s2.0-S0360319921003621-main.pdf$$yOpenAccess
000890413 8767_ $$8OAD0000098660$$92021-02-04$$d2021-02-09$$eHybrid-OA$$jZahlung erfolgt$$zBelegnr. 1200163771
000890413 909CO $$ooai:juser.fz-juelich.de:890413$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000890413 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168241$$aForschungszentrum Jülich$$b0$$kFZJ
000890413 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)168241$$aRWTH Aachen$$b0$$kRWTH
000890413 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129946$$aForschungszentrum Jülich$$b1$$kFZJ
000890413 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129883$$aForschungszentrum Jülich$$b2$$kFZJ
000890413 9130_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000890413 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000890413 9141_ $$y2021
000890413 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-32
000890413 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-32
000890413 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-08-32
000890413 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-32
000890413 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000890413 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J HYDROGEN ENERG : 2018$$d2020-08-32
000890413 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-32
000890413 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-32
000890413 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000890413 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-32
000890413 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-32
000890413 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-32
000890413 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-32
000890413 920__ $$lyes
000890413 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
000890413 9801_ $$aAPC
000890413 9801_ $$aFullTexts
000890413 980__ $$ajournal
000890413 980__ $$aVDB
000890413 980__ $$aUNRESTRICTED
000890413 980__ $$aI:(DE-Juel1)IEK-14-20191129
000890413 980__ $$aAPC
000890413 981__ $$aI:(DE-Juel1)IET-4-20191129