000890468 001__ 890468
000890468 005__ 20240610120522.0
000890468 0247_ $$2ISSN$$a0022-7722
000890468 0247_ $$2ISSN$$a1447-073X
000890468 0247_ $$2ISSN$$a1447-6959
000890468 0247_ $$2doi$$a10.3390/nano11020466
000890468 0247_ $$2Handle$$a2128/27188
000890468 0247_ $$2pmid$$a33673042
000890468 0247_ $$2WOS$$aWOS:000622922700001
000890468 0247_ $$2altmetric$$aaltmetric:100742490
000890468 037__ $$aFZJ-2021-00981
000890468 082__ $$a540
000890468 1001_ $$0P:(DE-Juel1)130633$$aFaley, Michael$$b0$$eCorresponding author
000890468 245__ $$aTitanium nitride as a new prospective material for nanoSQUIDs andsuperconducting nanobridge electronics
000890468 260__ $$aBasel$$bMDPI$$c2021
000890468 3367_ $$2DRIVER$$aarticle
000890468 3367_ $$2DataCite$$aOutput Types/Journal article
000890468 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1613548561_9307
000890468 3367_ $$2BibTeX$$aARTICLE
000890468 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890468 3367_ $$00$$2EndNote$$aJournal Article
000890468 520__ $$aNanobridge Josephson junctions and nanometer-scale superconducting quantum interference devices (nanoSQUIDs) based on titanium nitride (TiN) thin films are described. The TiN films have a room temperature resistivity of ~15 µΩ·cm, a superconducting transition temperature Tc of up to 5.3 K and a coherence length ξ(4.2 K) of ~105 nm. They were deposited using pulsed DC magnetron sputtering from a stoichiometric TiN target onto Si (100) substrates that were heated to 800 °C. Electron beam lithography and highly selective reactive ion etching were used to fabricate nanoSQUIDs with 20-nm-wide nanobridge Josephson junctions of variable thickness. X-ray and high-resolution electron microscopy studies were performed. Non-hysteretic I(V) characteristics of the nanobridges and nanoSQUIDs, as well as peak-to-peak modulations of up to 17 µV in the V(B) characteristics of the nanoSQUIDs, were measured at 4.2 K. The technology offers prospects for superconducting electronics based on nanobridge Josephson junctions operating within the framework of the Ginzburg–Landau theory at 4.2 K.
000890468 536__ $$0G:(DE-HGF)POF4-535$$a535 - Materials Information Discovery (POF4-535)$$cPOF4-535$$fPOF IV$$x0
000890468 588__ $$aDataset connected to DataCite
000890468 7001_ $$0P:(DE-Juel1)184619$$aLiu, Yuchen$$b1$$eCorresponding author
000890468 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal$$b2
000890468 773__ $$0PERI:(DE-600)2662255-5$$a10.3390/nano11020466$$n12$$p466$$tNanomaterials$$v11$$x2079-4991$$y2021
000890468 8564_ $$uhttps://juser.fz-juelich.de/record/890468/files/Invoice_MDPI_nanomaterials-1100569_1727.48EUR.pdf
000890468 8564_ $$uhttps://juser.fz-juelich.de/record/890468/files/nanomaterials-11-00466.pdf$$yOpenAccess
000890468 8767_ $$81100569$$92021-02-09$$d2021-02-11$$eAPC$$jZahlung erfolgt$$pnanomaterials-1100569$$zBelegnr. 1200163890
000890468 909CO $$ooai:juser.fz-juelich.de:890468$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000890468 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130633$$aForschungszentrum Jülich$$b0$$kFZJ
000890468 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184619$$aForschungszentrum Jülich$$b1$$kFZJ
000890468 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b2$$kFZJ
000890468 9130_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000890468 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000890468 9141_ $$y2021
000890468 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-06
000890468 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-06
000890468 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000890468 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-06
000890468 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANOMATERIALS-BASEL : 2018$$d2020-09-06
000890468 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-06
000890468 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-06
000890468 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-06
000890468 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-06
000890468 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-06
000890468 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-06
000890468 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000890468 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-06
000890468 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-06
000890468 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-06
000890468 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-06
000890468 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-09-06
000890468 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-06
000890468 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000890468 9801_ $$aAPC
000890468 9801_ $$aFullTexts
000890468 980__ $$ajournal
000890468 980__ $$aVDB
000890468 980__ $$aUNRESTRICTED
000890468 980__ $$aI:(DE-Juel1)PGI-5-20110106
000890468 980__ $$aAPC
000890468 981__ $$aI:(DE-Juel1)ER-C-1-20170209