000890523 001__ 890523
000890523 005__ 20240712101041.0
000890523 0247_ $$2doi$$a10.1039/D0CP06267G
000890523 0247_ $$2ISSN$$a1463-9076
000890523 0247_ $$2ISSN$$a1463-9084
000890523 0247_ $$2Handle$$a2128/27414
000890523 0247_ $$2pmid$$a33650589
000890523 0247_ $$2WOS$$aWOS:000627550700037
000890523 037__ $$aFZJ-2021-01010
000890523 082__ $$a540
000890523 1001_ $$0P:(DE-Juel1)167140$$aVereecken, L.$$b0$$eCorresponding author
000890523 245__ $$aTheoretical and experimental study of peroxy and alkoxy radicals in the NO 3 -initiated oxidation of isoprene
000890523 260__ $$aCambridge$$bRSC Publ.$$c2021
000890523 3367_ $$2DRIVER$$aarticle
000890523 3367_ $$2DataCite$$aOutput Types/Journal article
000890523 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1615814997_26364
000890523 3367_ $$2BibTeX$$aARTICLE
000890523 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890523 3367_ $$00$$2EndNote$$aJournal Article
000890523 520__ $$aThe initial stages of the nitrate radical (NO3) initiated oxidation of isoprene, in particular the fate of the peroxy (RO2) and alkoxy (RO) radicals, are examined by an extensive set of quantum chemical and theoretical kinetic calculations. It is shown that the oxidation mechanism is highly complex, and bears similarities to its OH-initiated oxidation mechanism as studied intensively over the last decade. The nascent nitrated RO2 radicals can interconvert by successive O2 addition/elimination reactions, and potentially have access to a wide range of unimolecular reactions with rate coefficients as high as 35 s−1; the contribution of this chemistry could not be ascertained experimentally. The chemistry of the alkoxy radicals derived from these peroxy radicals is affected by the nitrate moiety, and can lead to the formation of nitrated epoxy peroxy radicals in competition with isomerisation and decomposition channels that terminate the organic radical chain by NO2 elimination. The theoretical predictions are implemented in the FZJ-NO3-isoprene mechanism for NO3-initiated atmospheric oxidation of isoprene. The model predictions are compared against peroxy radical (RO2) and methyl vinyl ketone (MVK) measurements in a set of experiments on the isoprene + NO3 reaction system performed in the SAPHIR environmental chamber (IsopNO3 campaign). It is shown that the formation of NO2 from the peroxy radicals can prevent a large fraction of the peroxy radicals from being measured by the laser-induced fluorescence (ROxLIF) technique that relies on a quantitative conversion of peroxy radicals to hydroxyl radicals. Accounting for the relative conversion efficiency of RO2 species in the experiments, the agreement between observations and the theory-based FZJ-NO3-isoprene model predictions improves significantly. In addition, MVK formation in the NO3-initiated oxidation was found to be suppressed by the epoxidation of the unsaturated RO radical intermediates, allowing the model-predicted MVK concentrations to be in good agreement with the measurements. The FZJ-NO3-isoprene mechanism is compared against the MCM v3.3.1 and Wennberg et al. (2018) mechanisms.
000890523 536__ $$0G:(DE-HGF)POF4-211$$a211 - Die Atmosphäre im globalen Wandel (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000890523 588__ $$aDataset connected to CrossRef
000890523 7001_ $$0P:(DE-Juel1)178087$$aCarlsson, P. T. M.$$b1
000890523 7001_ $$0P:(DE-Juel1)166537$$aNovelli, A.$$b2
000890523 7001_ $$0P:(DE-HGF)0$$aBernard, F.$$b3
000890523 7001_ $$0P:(DE-HGF)0$$aBrown, S. S.$$b4
000890523 7001_ $$0P:(DE-Juel1)174162$$aCho, C.$$b5
000890523 7001_ $$0P:(DE-HGF)0$$aCrowley, J. N.$$b6
000890523 7001_ $$0P:(DE-Juel1)7363$$aFuchs, H.$$b7
000890523 7001_ $$0P:(DE-HGF)0$$aMellouki, W.$$b8
000890523 7001_ $$0P:(DE-Juel1)171432$$aReimer, David$$b9$$ufzj
000890523 7001_ $$0P:(DE-HGF)0$$aShenolikar, J.$$b10
000890523 7001_ $$0P:(DE-Juel1)5344$$aTillmann, R.$$b11
000890523 7001_ $$0P:(DE-HGF)0$$aZhou, L.$$b12
000890523 7001_ $$0P:(DE-Juel1)4528$$aKiendler-Scharr, A.$$b13
000890523 7001_ $$0P:(DE-Juel1)16324$$aWahner, A.$$b14
000890523 773__ $$0PERI:(DE-600)1476244-4$$a10.1039/D0CP06267G$$gp. 10.1039.D0CP06267G$$n9$$p5496-5515 $$tPhysical chemistry, chemical physics$$v23$$x1463-9076$$y2021
000890523 8564_ $$uhttps://juser.fz-juelich.de/record/890523/files/Sales%20Invoice_INV_009788.pdf
000890523 8564_ $$uhttps://juser.fz-juelich.de/record/890523/files/d0cp06267g.pdf$$yOpenAccess
000890523 8767_ $$8INV_009788$$92021-02-11$$d2021-02-15$$eHybrid-OA$$jZahlung erfolgt$$z1360GBP /Belegnr. 1200163981
000890523 909CO $$ooai:juser.fz-juelich.de:890523$$pdnbdelivery$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire
000890523 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167140$$aForschungszentrum Jülich$$b0$$kFZJ
000890523 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178087$$aForschungszentrum Jülich$$b1$$kFZJ
000890523 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166537$$aForschungszentrum Jülich$$b2$$kFZJ
000890523 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174162$$aForschungszentrum Jülich$$b5$$kFZJ
000890523 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)7363$$aForschungszentrum Jülich$$b7$$kFZJ
000890523 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171432$$aForschungszentrum Jülich$$b9$$kFZJ
000890523 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5344$$aForschungszentrum Jülich$$b11$$kFZJ
000890523 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)4528$$aForschungszentrum Jülich$$b13$$kFZJ
000890523 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16324$$aForschungszentrum Jülich$$b14$$kFZJ
000890523 9130_ $$0G:(DE-HGF)POF3-243$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTropospheric trace substances and their transformation processes$$x0
000890523 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000890523 9141_ $$y2021
000890523 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000890523 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-04
000890523 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-04
000890523 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000890523 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS CHEM CHEM PHYS : 2018$$d2020-09-04
000890523 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-04
000890523 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-04
000890523 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-04
000890523 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG$$d2020-09-04$$wger
000890523 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-04
000890523 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-09-04$$wger
000890523 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-04
000890523 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-09-04$$wger
000890523 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-04
000890523 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000890523 9801_ $$aAPC
000890523 9801_ $$aFullTexts
000890523 980__ $$ajournal
000890523 980__ $$aVDB
000890523 980__ $$aUNRESTRICTED
000890523 980__ $$aI:(DE-Juel1)IEK-8-20101013
000890523 980__ $$aAPC
000890523 981__ $$aI:(DE-Juel1)ICE-3-20101013