001     890551
005     20240711085656.0
024 7 _ |a 10.1021/acs.chemmater.0c02851
|2 doi
024 7 _ |a 0897-4756
|2 ISSN
024 7 _ |a 1520-5002
|2 ISSN
024 7 _ |a 2128/27364
|2 Handle
024 7 _ |a altmetric:94412303
|2 altmetric
024 7 _ |a WOS:000603288800009
|2 WOS
037 _ _ |a FZJ-2021-01033
082 _ _ |a 540
100 1 _ |a Böhm, Daniel
|0 P:(DE-Juel1)180434
|b 0
|e Corresponding author
245 _ _ |a V(III)-Doped Nickel Oxide-Based Nanocatalysts for Electrochemical Water Splitting: Influence of Phase, Composition, and Doping on the Electrocatalytic Activity
260 _ _ |a Washington, DC
|c 2020
|b American Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1615470441_5383
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Doped nickel oxide-based compounds are attracting great interest as very efficient and abundant catalysts and were thoroughly investigated as battery materials in the past. However, there is still no clear understanding of the influence of dopants on the complex dynamic character of their chemically and potentially driven transformations. We have developed a synthesis procedure enabling the controlled formation of nanosized nickel hydroxide and nickel oxide polymorphs substituted with vanadium(III) [V(III)] ions and further investigated their structure–activity correlation for electrochemical water oxidation. This work therefore primarily focuses on an in-depth structural characterization of the homogeneously doped nanosized α- and β-Ni(OH)2 polymorphs. It could be shown that concentrations of 10 at. % V(III) and higher can effectively inhibit a spontaneous phase transformation known as chemical aging of the turbostratic α-phase to the more crystalline β-Ni(OH)2 phase in neutral aqueous media. The Fe-impurity-biased electrocatalytic activity determined for α-/β-Ni1–xVx(OH)2 showed only a minor increase of 10% oxygen evolution reaction (OER) activity for an 1 at. % doped nonaged sample resembling the α-phase, while a 5 at. % V(III)-doped sample chemically aged over 24 h led to a doubled OER activity versus the undoped reference which transformed into β-Ni(OH)2 over that period of time.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Beetz, Michael
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Kutz, Christopher
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Zhang, Siyuan
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Scheu, Christina
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Bein, Thomas
|0 P:(DE-HGF)0
|b 5
|e Corresponding author
700 1 _ |a Fattakhova-Rohlfing, Dina
|0 P:(DE-Juel1)171780
|b 6
|e Corresponding author
773 _ _ |a 10.1021/acs.chemmater.0c02851
|g Vol. 32, no. 24, p. 10394 - 10406
|0 PERI:(DE-600)1500399-1
|n 24
|p 10394 - 10406
|t Chemistry of materials
|v 32
|y 2020
|x 1520-5002
856 4 _ |u https://juser.fz-juelich.de/record/890551/files/Invoice_APC600166963.pdf
856 4 _ |u https://juser.fz-juelich.de/record/890551/files/acs.chemmater.0c02851.pdf
|y Restricted
856 4 _ |y Published on 2020-11-16. Available in OpenAccess from 2021-11-16.
|u https://juser.fz-juelich.de/record/890551/files/2020_V-doped_Ni%28OH%292_acs.chemmater.0c02851_LastAuthorVersion.pdf
856 4 _ |y Published on 2020-11-16. Available in OpenAccess from 2021-11-16.
|u https://juser.fz-juelich.de/record/890551/files/2020_V-doped_Ni%28OH%292_acs.chemmater.0c02851_SuppInfo_Verlagsversion.pdf
909 C O |o oai:juser.fz-juelich.de:890551
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)180434
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)171780
913 0 _ |a DE-HGF
|b Energie
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Electrochemical Storage
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-08-31
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-08-31
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-31
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b CHEM MATER : 2018
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-31
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-08-31
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEM MATER : 2018
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-31
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-08-31
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-31
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21