000890626 001__ 890626
000890626 005__ 20240712113126.0
000890626 0247_ $$2doi$$a10.1039/D0TA11775G
000890626 0247_ $$2ISSN$$a2050-7488
000890626 0247_ $$2ISSN$$a2050-7496
000890626 0247_ $$2Handle$$a2128/30564
000890626 0247_ $$2altmetric$$aaltmetric:102004255
000890626 0247_ $$2WOS$$aWOS:000635284900017
000890626 037__ $$aFZJ-2021-01081
000890626 082__ $$a530
000890626 1001_ $$0P:(DE-HGF)0$$aKlein, Sven$$b0
000890626 245__ $$aProspects and limitations of single-crystal cathode materials to overcome cross-talk phenomena in high-voltage lithium ion cells
000890626 260__ $$aLondon [u.a.]$$bRSC$$c2021
000890626 3367_ $$2DRIVER$$aarticle
000890626 3367_ $$2DataCite$$aOutput Types/Journal article
000890626 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1643187583_11321
000890626 3367_ $$2BibTeX$$aARTICLE
000890626 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890626 3367_ $$00$$2EndNote$$aJournal Article
000890626 520__ $$aThe specific energy of lithium ion batteries can be further enhanced by increasing the cell voltage (>4.3 V). However, conventional cathode active materials (CAMs) e.g. LiNi0.5Co0.2Mn0.3O2 (NCM523) with typical poly-crystal (PC)-based secondary particles suffer from rollover failure at 4.5 V, which is shown to be the result of an electrode cross-talk, i.e., dissolution of transition metals (TMs) from the cathode and deposition at the graphite-based anode. Interestingly, the TM deposits at the anode are locally accumulated and dendritic Li deposits are analytically indicated on exactly these spots. Severe formation of Li dendrites is concluded to be the onset of sudden and abrupt capacity fade as it is accompanied by severe consumption of active Li. In contrast, NCM523 CAMs based on single-crystals (SCs), which are single-standing primary particles, demonstrate an improved cycle life in SC-NCM523‖graphite cells. Less rollover fading, cross-talk and Li dendrites at the anode are observed and attributed to the morphology of the SC-based cathode. It is concluded that the lower specific surface area diminishes electrolyte contact, thus the reaction area for transition metal dissolution and finally improves the high voltage performance.
000890626 536__ $$0G:(DE-HGF)POF4-122$$a122 - Elektrochemische Energiespeicherung (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000890626 588__ $$aDataset connected to CrossRef
000890626 7001_ $$0P:(DE-HGF)0$$aBärmann, Peer$$b1
000890626 7001_ $$0P:(DE-HGF)0$$aFromm, Olga$$b2
000890626 7001_ $$0P:(DE-Juel1)171270$$aBorzutzki, Kristina$$b3$$ufzj
000890626 7001_ $$0P:(DE-HGF)0$$aReiter, Jakub$$b4
000890626 7001_ $$0P:(DE-HGF)0$$aFan, Quan$$b5
000890626 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b6$$eCorresponding author
000890626 7001_ $$0P:(DE-HGF)0$$aPlacke, Tobias$$b7$$eCorresponding author
000890626 7001_ $$0P:(DE-Juel1)171865$$aKasnatscheew, Johannes$$b8$$eCorresponding author
000890626 773__ $$0PERI:(DE-600)2702232-8$$a10.1039/D0TA11775G$$gp. 10.1039.D0TA11775G$$n12$$p7546-7555$$tJournal of materials chemistry / A$$v9$$x2050-7488$$y2021
000890626 8564_ $$uhttps://juser.fz-juelich.de/record/890626/files/Sales%20Invoice_INV_009891.pdf
000890626 8564_ $$uhttps://juser.fz-juelich.de/record/890626/files/Manuscript.pdf$$yOpenAccess
000890626 8564_ $$uhttps://juser.fz-juelich.de/record/890626/files/d0ta11775g.pdf$$yOpenAccess
000890626 8767_ $$8INV_009891$$92021-02-17$$d2021-02-18$$eHybrid-OA$$jZahlung erfolgt$$z1360GBP / Belegnr.1200164133
000890626 909CO $$ooai:juser.fz-juelich.de:890626$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000890626 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171270$$aForschungszentrum Jülich$$b3$$kFZJ
000890626 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b6$$kFZJ
000890626 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171865$$aForschungszentrum Jülich$$b8$$kFZJ
000890626 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000890626 9130_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000890626 9141_ $$y2021
000890626 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-18
000890626 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-18
000890626 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-08-18
000890626 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000890626 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-08-18
000890626 915__ $$0LIC:(DE-HGF)CCBYNC3$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 3.0
000890626 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-18
000890626 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bJ MATER CHEM A : 2018$$d2020-08-18
000890626 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-18
000890626 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG$$d2020-08-18$$wger
000890626 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MATER CHEM A : 2018$$d2020-08-18
000890626 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-08-18$$wger
000890626 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-18
000890626 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-18
000890626 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000890626 9801_ $$aAPC
000890626 9801_ $$aFullTexts
000890626 980__ $$ajournal
000890626 980__ $$aVDB
000890626 980__ $$aUNRESTRICTED
000890626 980__ $$aI:(DE-Juel1)IEK-12-20141217
000890626 980__ $$aAPC
000890626 981__ $$aI:(DE-Juel1)IMD-4-20141217