000890654 001__ 890654
000890654 005__ 20240712100914.0
000890654 0247_ $$2ISSN$$a0022-7722
000890654 0247_ $$2ISSN$$a1447-073X
000890654 0247_ $$2ISSN$$a1447-6959
000890654 0247_ $$2doi$$a10.5194/acp-21-2427-2021
000890654 0247_ $$2Handle$$a2128/27242
000890654 0247_ $$2altmetric$$aaltmetric:100525114
000890654 0247_ $$2WOS$$aWOS:000621375300001
000890654 037__ $$aFZJ-2021-01102
000890654 082__ $$a550
000890654 1001_ $$0P:(DE-Juel1)169568$$aRobrecht, Sabine$$b0$$eCorresponding author$$ufzj
000890654 245__ $$aPotential of future stratospheric ozone loss in the midlatitudes under global warming and sulfate geoengineering
000890654 260__ $$aKatlenburg-Lindau$$bEGU$$c2021
000890654 3367_ $$2DRIVER$$aarticle
000890654 3367_ $$2DataCite$$aOutput Types/Journal article
000890654 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1617261333_30649
000890654 3367_ $$2BibTeX$$aARTICLE
000890654 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890654 3367_ $$00$$2EndNote$$aJournal Article
000890654 520__ $$aThe potential of heterogeneous chlorine activation in the midlatitude lowermost stratosphere during summer is a matter of debate. The occurrence of heterogeneous chlorine activation through the presence of aerosol particles could cause ozone destruction. This chemical process requires low temperatures and is accelerated by an enhancement of the stratospheric water vapour and sulfate amount. In particular, the conditions present in the lowermost stratosphere during the North American Summer Monsoon season (NAM) are expected to be cold and moist enough to cause the occurrence of heterogeneous chlorine activation. Furthermore, the temperatures, the water vapour mixing ratio and the sulfate aerosol abundance are affected by future global warming and by the potential application of sulfate geoengineering. Hence, both future scenarios could promote this ozone destruction process.We investigate the likelihood of the occurrence of heterogeneous chlorine activation and its impact on ozone in the lowermost-stratospheric mixing layer between tropospheric and stratospheric air above central North America (30.6–49.6∘ N, 72.25–124.75∘ W) in summer for conditions today, at the middle and at the end of the 21st century. Therefore, the results of the Geoengineering Large Ensemble Simulations (GLENS) for the lowermost-stratospheric mixing layer between tropospheric and stratospheric air are considered together with 10-day box-model simulations performed with the Chemical Lagrangian Model of the Stratosphere (CLaMS). In GLENS two future scenarios are simulated: the RCP8.5 global warming scenario and a geoengineering scenario, where sulfur is additionally injected into the stratosphere to keep the global mean surface temperature from changing.In the GLENS simulations, the mixing layer will warm and moisten in both future scenarios with a larger effect in the geoengineering scenario. The likelihood of chlorine activation occurring in the mixing layer is highest in the years 2040–2050 if geoengineering is applied, accounting for 3.3 %. In comparison, the likelihood of conditions today is 1.0 %. At the end of the 21st century, the likelihood of this ozone destruction process occurring decreases. We found that 0.1 % of the ozone mixing ratios in the mixing layer above central North America is destroyed for conditions today. A maximum ozone destruction of 0.3 % in the mixing layer occurs in the years 2040–2050 if geoengineering is applied. Comparing the southernmost latitude band (30–35∘ N) and the northernmost latitude band (44–49∘ N) of the considered region, we found a higher likelihood of the occurrence of heterogeneous chlorine activation in the southernmost latitude band, causing a higher impact on ozone as well. However, the ozone loss process is found to have a minor impact on the midlatitude ozone column.
000890654 536__ $$0G:(DE-HGF)POF4-211$$a211 - Die Atmosphäre im globalen Wandel (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000890654 588__ $$aDataset connected to DataCite
000890654 7001_ $$0P:(DE-Juel1)129164$$aVogel, Bärbel$$b1
000890654 7001_ $$00000-0002-6557-3569$$aTilmes, Simone$$b2
000890654 7001_ $$0P:(DE-Juel1)129138$$aMüller, Rolf$$b3
000890654 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-21-2427-2021$$gVol. 21, no. 4, p. 2427 - 2455$$n4$$p2427 - 2455$$tAtmospheric chemistry and physics$$v21$$x1680-7316$$y2021
000890654 8564_ $$uhttps://juser.fz-juelich.de/record/890654/files/invoice_Helmholtz-PUC-2021-21.pdf
000890654 8564_ $$uhttps://juser.fz-juelich.de/record/890654/files/acp-21-2427-2021.pdf$$yOpenAccess
000890654 8767_ $$8Helmholtz-PUC-2021-21$$92021-04-01$$d2021-04-12$$eAPC$$jZahlung erfolgt$$pacp-2020-747$$zBelegnr.  1200165527 / 2021
000890654 909CO $$ooai:juser.fz-juelich.de:890654$$pdnbdelivery$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire
000890654 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169568$$aForschungszentrum Jülich$$b0$$kFZJ
000890654 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129164$$aForschungszentrum Jülich$$b1$$kFZJ
000890654 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129138$$aForschungszentrum Jülich$$b3$$kFZJ
000890654 9130_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000890654 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000890654 9141_ $$y2021
000890654 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000890654 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000890654 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-02-02
000890654 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-02-02
000890654 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-02-02
000890654 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2021-02-02
000890654 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000890654 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000890654 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000890654 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000890654 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000890654 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2019$$d2021-02-02
000890654 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2019$$d2021-02-02
000890654 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02
000890654 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02
000890654 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-02
000890654 920__ $$lyes
000890654 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000890654 9801_ $$aAPC
000890654 9801_ $$aFullTexts
000890654 980__ $$ajournal
000890654 980__ $$aVDB
000890654 980__ $$aI:(DE-Juel1)IEK-7-20101013
000890654 980__ $$aAPC
000890654 980__ $$aUNRESTRICTED
000890654 981__ $$aI:(DE-Juel1)ICE-4-20101013