001     890654
005     20240712100914.0
024 7 _ |a 0022-7722
|2 ISSN
024 7 _ |a 1447-073X
|2 ISSN
024 7 _ |a 1447-6959
|2 ISSN
024 7 _ |a 10.5194/acp-21-2427-2021
|2 doi
024 7 _ |a 2128/27242
|2 Handle
024 7 _ |a altmetric:100525114
|2 altmetric
024 7 _ |a WOS:000621375300001
|2 WOS
037 _ _ |a FZJ-2021-01102
082 _ _ |a 550
100 1 _ |a Robrecht, Sabine
|0 P:(DE-Juel1)169568
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Potential of future stratospheric ozone loss in the midlatitudes under global warming and sulfate geoengineering
260 _ _ |a Katlenburg-Lindau
|c 2021
|b EGU
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1617261333_30649
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The potential of heterogeneous chlorine activation in the midlatitude lowermost stratosphere during summer is a matter of debate. The occurrence of heterogeneous chlorine activation through the presence of aerosol particles could cause ozone destruction. This chemical process requires low temperatures and is accelerated by an enhancement of the stratospheric water vapour and sulfate amount. In particular, the conditions present in the lowermost stratosphere during the North American Summer Monsoon season (NAM) are expected to be cold and moist enough to cause the occurrence of heterogeneous chlorine activation. Furthermore, the temperatures, the water vapour mixing ratio and the sulfate aerosol abundance are affected by future global warming and by the potential application of sulfate geoengineering. Hence, both future scenarios could promote this ozone destruction process.We investigate the likelihood of the occurrence of heterogeneous chlorine activation and its impact on ozone in the lowermost-stratospheric mixing layer between tropospheric and stratospheric air above central North America (30.6–49.6∘ N, 72.25–124.75∘ W) in summer for conditions today, at the middle and at the end of the 21st century. Therefore, the results of the Geoengineering Large Ensemble Simulations (GLENS) for the lowermost-stratospheric mixing layer between tropospheric and stratospheric air are considered together with 10-day box-model simulations performed with the Chemical Lagrangian Model of the Stratosphere (CLaMS). In GLENS two future scenarios are simulated: the RCP8.5 global warming scenario and a geoengineering scenario, where sulfur is additionally injected into the stratosphere to keep the global mean surface temperature from changing.In the GLENS simulations, the mixing layer will warm and moisten in both future scenarios with a larger effect in the geoengineering scenario. The likelihood of chlorine activation occurring in the mixing layer is highest in the years 2040–2050 if geoengineering is applied, accounting for 3.3 %. In comparison, the likelihood of conditions today is 1.0 %. At the end of the 21st century, the likelihood of this ozone destruction process occurring decreases. We found that 0.1 % of the ozone mixing ratios in the mixing layer above central North America is destroyed for conditions today. A maximum ozone destruction of 0.3 % in the mixing layer occurs in the years 2040–2050 if geoengineering is applied. Comparing the southernmost latitude band (30–35∘ N) and the northernmost latitude band (44–49∘ N) of the considered region, we found a higher likelihood of the occurrence of heterogeneous chlorine activation in the southernmost latitude band, causing a higher impact on ozone as well. However, the ozone loss process is found to have a minor impact on the midlatitude ozone column.
536 _ _ |a 211 - Die Atmosphäre im globalen Wandel (POF4-211)
|0 G:(DE-HGF)POF4-211
|c POF4-211
|x 0
|f POF IV
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Vogel, Bärbel
|0 P:(DE-Juel1)129164
|b 1
700 1 _ |a Tilmes, Simone
|0 0000-0002-6557-3569
|b 2
700 1 _ |a Müller, Rolf
|0 P:(DE-Juel1)129138
|b 3
773 _ _ |a 10.5194/acp-21-2427-2021
|g Vol. 21, no. 4, p. 2427 - 2455
|0 PERI:(DE-600)2069847-1
|n 4
|p 2427 - 2455
|t Atmospheric chemistry and physics
|v 21
|y 2021
|x 1680-7316
856 4 _ |u https://juser.fz-juelich.de/record/890654/files/invoice_Helmholtz-PUC-2021-21.pdf
856 4 _ |u https://juser.fz-juelich.de/record/890654/files/acp-21-2427-2021.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:890654
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:Earth_Environment
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)169568
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129164
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129138
913 0 _ |a DE-HGF
|b Erde und Umwelt
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF3-240
|0 G:(DE-HGF)POF3-244
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-200
|4 G:(DE-HGF)POF
|v Composition and dynamics of the upper troposphere and middle atmosphere
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-211
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Die Atmosphäre im globalen Wandel
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-02-02
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2021-02-02
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-02-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-02
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ATMOS CHEM PHYS : 2019
|d 2021-02-02
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ATMOS CHEM PHYS : 2019
|d 2021-02-02
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-02-02
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-02-02
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-02-02
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|k IEK-7
|l Stratosphäre
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21