000890729 001__ 890729
000890729 005__ 20240712113128.0
000890729 0247_ $$2doi$$a10.1002/batt.202100018
000890729 0247_ $$2Handle$$a2128/27934
000890729 0247_ $$2altmetric$$aaltmetric:100014523
000890729 0247_ $$2WOS$$aWOS:000616816100001
000890729 037__ $$aFZJ-2021-01152
000890729 082__ $$a620
000890729 1001_ $$0P:(DE-HGF)0$$aKorshunov, Aleksandr$$b0
000890729 245__ $$aHost‐Guest Interactions Enhance the Performance of Viologen Electrolytes for Aqueous Organic Redox Flow Batteries
000890729 260__ $$aWeinheim$$bWiley-VCH$$c2021
000890729 3367_ $$2DRIVER$$aarticle
000890729 3367_ $$2DataCite$$aOutput Types/Journal article
000890729 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1624260252_1791
000890729 3367_ $$2BibTeX$$aARTICLE
000890729 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890729 3367_ $$00$$2EndNote$$aJournal Article
000890729 520__ $$aHost-guest interactions are an attractive approach to design redox electrolytes, enabling to precisely tune the key properties for redox flow batteries such as half-cell redox potential, solubility, and stability. Herein we report a host-guest complex of highly water soluble (2-hydroxypropyl)-β-cyclodextrin with 1-decyl-1′-ethyl-4,4′-bipyridinium dibromide as anolyte in a new aqueous organic redox flow battery (AORFB). The supramolecular anolyte ensured the total RFB voltage increase of ≈9 % up to 0.97 V and provided a stable capacity delivery for more than 500 cycles with a capacity fade rate of 0.037 %/cycle (2.84 %/day) at high Coulombic (>99.5 %) and energy (>62 %) efficiencies. The results highlight host-guest interactions as promising strategy towards more effective storage of renewable energy within AORFBs.
000890729 536__ $$0G:(DE-HGF)POF4-122$$a122 - Elektrochemische Energiespeicherung (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000890729 588__ $$aDataset connected to CrossRef
000890729 7001_ $$0P:(DE-HGF)0$$aGibalova, Anna$$b1
000890729 7001_ $$0P:(DE-Juel1)166392$$aGrünebaum, Mariano$$b2
000890729 7001_ $$0P:(DE-HGF)0$$aRavoo, Bart Jan$$b3$$eCorresponding author
000890729 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b4$$eCorresponding author
000890729 7001_ $$0P:(DE-Juel1)171204$$aCekic-Laskovic, Isidora$$b5$$eCorresponding author
000890729 773__ $$0PERI:(DE-600)2897248-X$$a10.1002/batt.202100018$$gp. batt.202100018$$n6$$p923-928$$tBatteries & supercaps$$v4$$x2566-6223$$y2021
000890729 8564_ $$uhttps://juser.fz-juelich.de/record/890729/files/Invoice_5606304.pdf
000890729 8564_ $$uhttps://juser.fz-juelich.de/record/890729/files/batt.202100018.pdf$$yOpenAccess
000890729 8767_ $$d2021-02-24$$eHybrid-OA$$jDEAL$$lDEAL: Wiley
000890729 8767_ $$85606304$$92021-06-17$$d2021-06-23$$eCover$$jZahlung erfolgt$$p202100018$$zBelegnr. 1200168202
000890729 909CO $$ooai:juser.fz-juelich.de:890729$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$pOpenAPC$$popen_access$$popenaire
000890729 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166392$$aForschungszentrum Jülich$$b2$$kFZJ
000890729 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b4$$kFZJ
000890729 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171204$$aForschungszentrum Jülich$$b5$$kFZJ
000890729 9130_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000890729 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000890729 9141_ $$y2021
000890729 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-32
000890729 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-32
000890729 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000890729 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-08-32
000890729 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-08-32$$wger
000890729 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-32
000890729 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000890729 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-32
000890729 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-32
000890729 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000890729 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000890729 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000890729 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
000890729 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000890729 9801_ $$aAPC
000890729 9801_ $$aFullTexts
000890729 980__ $$ajournal
000890729 980__ $$aVDB
000890729 980__ $$aI:(DE-Juel1)IEK-12-20141217
000890729 980__ $$aAPC
000890729 980__ $$aUNRESTRICTED
000890729 981__ $$aI:(DE-Juel1)IMD-4-20141217