000890778 001__ 890778
000890778 005__ 20240610120125.0
000890778 0247_ $$2doi$$a10.1140/epje/s10189-021-00027-8
000890778 0247_ $$2Handle$$a2128/27381
000890778 0247_ $$2altmetric$$aaltmetric:101607544
000890778 0247_ $$2pmid$$a33683543
000890778 0247_ $$2WOS$$aWOS:000627407100009
000890778 037__ $$aFZJ-2021-01194
000890778 041__ $$aEnglish
000890778 082__ $$a530
000890778 1001_ $$0P:(DE-Juel1)131039$$aWinkler, Roland G.$$b0$$eCorresponding author$$ufzj
000890778 245__ $$aFlagellar arrangements in elongated peritrichous bacteria: bundle formation and swimming properties
000890778 260__ $$aHeidelberg$$bSpringer$$c2021
000890778 3367_ $$2DRIVER$$aarticle
000890778 3367_ $$2DataCite$$aOutput Types/Journal article
000890778 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1615552872_17330
000890778 3367_ $$2BibTeX$$aARTICLE
000890778 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890778 3367_ $$00$$2EndNote$$aJournal Article
000890778 520__ $$aThe surface distribution of flagella in peritrichous bacterial cells has been traditionally assumed to be random. Recently, the presence of a regular grid-like pattern of basal bodies has been suggested. Experimentally, the manipulation of the anchoring points of flagella in the cell membrane is difficult, and thus, elucidation of the consequences of a particular pattern on bacterial locomotion is challenging. We analyze the bundle formation process and swimming properties of Bacillus subtilis-like cells considering random, helical, and ring-like arrangements of flagella by means of mesoscale hydrodynamics simulations. Helical and ring patterns preferentially yield configurations with a single bundle, whereas configurations with no clear bundles are most likely for random anchoring. For any type of pattern, there is an almost equally low probability to form V-shaped bundle configurations with at least two bundles. Variation of the flagellum length yields a clear preference for a single major bundle in helical and ring patterns as soon as the flagellum length exceeds the body length. The average swimming speed of cells with a single or two bundles is rather similar, and approximately 50% larger than that of cells of other types of flagellar organization. Considering the various anchoring patterns, rings yield the smallest average swimming speed independent of the type of bundle, followed by helical arrangements, and largest speeds are observed for random anchoring. Hence, a regular pattern provides no advantage in terms of swimming speed compared to random anchoring of flagella, but yields more likely single-bundle configurations.
000890778 536__ $$0G:(DE-HGF)POF4-524$$a524 - Molecular and Cellular Information Processing (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000890778 7001_ $$0P:(DE-Juel1)174327$$aClopes, Judit$$b1$$ufzj
000890778 770__ $$aMotile Active Matter
000890778 773__ $$0PERI:(DE-600)2004003-9$$a10.1140/epje/s10189-021-00027-8$$p17$$tThe European physical journal / E$$v44$$x1292-8941$$y2021
000890778 8564_ $$uhttps://juser.fz-juelich.de/record/890778/files/Clop%C3%A9s-Winkler2021_Article_FlagellarArrangementsInElongat.pdf$$yOpenAccess
000890778 8767_ $$d2021-02-15$$eHybrid-OA$$jDEAL$$lDEAL: Springer
000890778 909CO $$ooai:juser.fz-juelich.de:890778$$popenaire$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access
000890778 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131039$$aForschungszentrum Jülich$$b0$$kFZJ
000890778 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174327$$aForschungszentrum Jülich$$b1$$kFZJ
000890778 9130_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0
000890778 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000890778 9141_ $$y2021
000890778 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-22
000890778 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-22
000890778 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000890778 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-22
000890778 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-08-22
000890778 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-22
000890778 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2020-08-22$$wger
000890778 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-22
000890778 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-22
000890778 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000890778 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-22
000890778 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR PHYS J E : 2018$$d2020-08-22
000890778 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-22
000890778 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-08-22$$wger
000890778 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-22
000890778 9201_ $$0I:(DE-Juel1)IAS-2-20090406$$kIAS-2$$lTheorie der Weichen Materie und Biophysik$$x0
000890778 9201_ $$0I:(DE-Juel1)IBI-5-20200312$$kIBI-5$$lTheoretische Physik der Lebenden Materie$$x1
000890778 9201_ $$0I:(DE-82)080008_20150909$$kJARA-SOFT$$lJARA-SOFT$$x2
000890778 9801_ $$aAPC
000890778 9801_ $$aFullTexts
000890778 980__ $$ajournal
000890778 980__ $$aVDB
000890778 980__ $$aUNRESTRICTED
000890778 980__ $$aI:(DE-Juel1)IAS-2-20090406
000890778 980__ $$aI:(DE-Juel1)IBI-5-20200312
000890778 980__ $$aI:(DE-82)080008_20150909
000890778 980__ $$aAPC
000890778 981__ $$aI:(DE-Juel1)IAS-2-20090406