001 | 890921 | ||
005 | 20241127124644.0 | ||
024 | 7 | _ | |a 10.1016/j.envint.2021.106474 |2 doi |
024 | 7 | _ | |a 0160-4120 |2 ISSN |
024 | 7 | _ | |a 1873-6750 |2 ISSN |
024 | 7 | _ | |a 2128/27610 |2 Handle |
024 | 7 | _ | |a altmetric:101701261 |2 altmetric |
024 | 7 | _ | |a 33711760 |2 pmid |
024 | 7 | _ | |a WOS:000641419900009 |2 WOS |
037 | _ | _ | |a FZJ-2021-01246 |
082 | _ | _ | |a 600 |
100 | 1 | _ | |a Breuer, Janos |0 P:(DE-Juel1)172087 |b 0 |e Corresponding author |
245 | _ | _ | |a How to reduce the greenhouse gas emissions and air pollution caused by light and heavy duty vehicles with battery-electric, fuel cell-electric and catenary trucks |
260 | _ | _ | |a Amsterdam [u.a.] |c 2021 |b Elsevier Science |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1618399221_26707 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The reduction of greenhouse gas emissions is one of the greatest global challenges through 2050. Besides greenhouse gas emissions, air pollution, such as nitrogen oxide and particulate matter emissions, has gained increasing attention in agglomerated areas with transport vehicles being one of the main sources thereof. Alternative fuels that fulfill the greenhouse gas reduction goals also offer the possibility of solving the challenge of rising urban pollution. This work focuses on the electric drive option for heavy and light duty vehicle freight transport. In this study, fuel cell-electric vehicles, battery-electric vehicles and overhead catenary line trucks were investigated, taking a closer look at their potential to reduce greenhouse gas emissions and air pollution and also considering the investment and operating costs of the required infrastructure. This work was conducted using a bottom-up transport model for the federal state of North Rhine-Westphalia in Germany. Two scenarios for reducing these emissions were analyzed at a spatial level. In the first of these, selected federal highways with the highest traffic volume were equipped with overhead catenary lines for the operation of diesel-hybrid overhead trucks on them. For the second spatial scenario, the representative urban area of the city of Cologne was investigated in terms of air pollution, shifting articulated trucks to diesel-hybrid overhead trucks and rigid trucks, trailer trucks and light duty vehicles to battery-electric or fuel cell-electric drives. For the economic analysis, the building up of a hydrogen infrastructure in the cases of articulated trucks and all heavy duty vehicles were also taken into account. The results showed that diesel-hybrid overhead trucks are only a cost-efficient solution for highways with high traffic volume, whereas battery overhead trucks have a high uncertainty in terms of costs and technical feasibility. In general, the broad range of costs for battery overhead trucks makes them competitive with fuel cell-electric trucks. Articulated trucks have the highest potential to be operated as overhead trucks. However, the results indicated that air pollution is only partially reduced by switching conventional articulated trucks to electric drive models. The overall results show that a comprehensive approach such as fuel cell-electric drives for all trucks would most likely be more beneficial. |
536 | _ | _ | |a 135 - Fuel Cells (POF3-135) |0 G:(DE-HGF)POF3-135 |c POF3-135 |f POF III |x 0 |
536 | _ | _ | |a 134 - Electrolysis and Hydrogen (POF3-134) |0 G:(DE-HGF)POF3-134 |c POF3-134 |f POF III |x 1 |
536 | _ | _ | |a 1232 - Power-based Fuels and Chemicals (POF4-123) |0 G:(DE-HGF)POF4-1232 |c POF4-123 |f POF IV |x 2 |
536 | _ | _ | |a 1111 - Effective System Transformation Pathways (POF4-111) |0 G:(DE-HGF)POF4-1111 |c POF4-111 |f POF IV |x 3 |
536 | _ | _ | |a 1112 - Societally Feasible Transformation Pathways (POF4-111) |0 G:(DE-HGF)POF4-1112 |c POF4-111 |f POF IV |x 4 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Samsun, Remzi Can |0 P:(DE-Juel1)207065 |b 1 |
700 | 1 | _ | |a Stolten, Detlef |0 P:(DE-Juel1)129928 |b 2 |
700 | 1 | _ | |a Peters, Ralf |0 P:(DE-Juel1)129902 |b 3 |
773 | _ | _ | |a 10.1016/j.envint.2021.106474 |g Vol. 152, p. 106474 - |0 PERI:(DE-600)1497569-5 |p 106474 - |t Environment international |v 152 |y 2021 |x 0160-4120 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/890921/files/Invoice_OAD0000104462.pdf |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/890921/files/1-s2.0-S0160412021000994-main.pdf |
909 | C | O | |o oai:juser.fz-juelich.de:890921 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)172087 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 0 |6 P:(DE-Juel1)172087 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)207065 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)129928 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 2 |6 P:(DE-Juel1)129928 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)129902 |
913 | 0 | _ | |a DE-HGF |b Energie |l Speicher und vernetzte Infrastrukturen |1 G:(DE-HGF)POF3-130 |0 G:(DE-HGF)POF3-135 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-100 |4 G:(DE-HGF)POF |v Fuel Cells |x 0 |
913 | 0 | _ | |a DE-HGF |b Energie |l Speicher und vernetzte Infrastrukturen |1 G:(DE-HGF)POF3-130 |0 G:(DE-HGF)POF3-134 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-100 |4 G:(DE-HGF)POF |v Electrolysis and Hydrogen |x 1 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-123 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Chemische Energieträger |9 G:(DE-HGF)POF4-1232 |x 0 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Energiesystemdesign (ESD) |1 G:(DE-HGF)POF4-110 |0 G:(DE-HGF)POF4-111 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Energiesystemtransformation |9 G:(DE-HGF)POF4-1111 |x 1 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Energiesystemdesign (ESD) |1 G:(DE-HGF)POF4-110 |0 G:(DE-HGF)POF4-111 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Energiesystemtransformation |9 G:(DE-HGF)POF4-1112 |x 2 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-01-31 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-31 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2021-01-31 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2021-01-31 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2021-01-31 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2021-01-31 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ENVIRON INT : 2019 |d 2021-01-31 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b ENVIRON INT : 2019 |d 2021-01-31 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2021-01-31 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2021-01-31 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-31 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2021-01-31 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-01-31 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2021-01-31 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2021-01-31 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |d 2021-01-31 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-01-31 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2021-01-31 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-01-31 |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-14-20191129 |k IEK-14 |l Elektrochemische Verfahrenstechnik |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-3-20101013 |k IEK-3 |l Technoökonomische Systemanalyse |x 1 |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-14-20191129 |
980 | _ | _ | |a I:(DE-Juel1)IEK-3-20101013 |
980 | _ | _ | |a APC |
981 | _ | _ | |a I:(DE-Juel1)IET-4-20191129 |
981 | _ | _ | |a I:(DE-Juel1)ICE-2-20101013 |
981 | _ | _ | |a I:(DE-Juel1)IET-4-20191129 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|