000891077 001__ 891077
000891077 005__ 20240712113149.0
000891077 0247_ $$2doi$$a10.1088/1361-648X/abef9d
000891077 0247_ $$2ISSN$$a0953-8984
000891077 0247_ $$2ISSN$$a1361-648X
000891077 0247_ $$2Handle$$a2128/27895
000891077 0247_ $$2altmetric$$aaltmetric:103744228
000891077 0247_ $$2pmid$$a33730712
000891077 0247_ $$2WOS$$aWOS:000642192500001
000891077 037__ $$aFZJ-2021-01348
000891077 082__ $$a530
000891077 1001_ $$0P:(DE-Juel1)185067$$aHuang, Jun$$b0$$eCorresponding author
000891077 245__ $$aImpedance Response of Electrochemical Interfaces: Part II – Chemisorption
000891077 260__ $$aBristol$$bIOP Publ.$$c2021
000891077 3367_ $$2DRIVER$$aarticle
000891077 3367_ $$2DataCite$$aOutput Types/Journal article
000891077 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1622531094_32305
000891077 3367_ $$2BibTeX$$aARTICLE
000891077 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891077 3367_ $$00$$2EndNote$$aJournal Article
000891077 520__ $$aPhysical modelling helps to acquire fundamental insights from experimental data when electrochemical impedance spectroscopy is employed for mechanistic understandings of electrocatalytic reactions. Herein, we report an analytical solution for chemisorption impedance from a consistent treatment of ion transport in the solution and electron transfer on the surface. Our formulation avoids both a priori decoupling of double-layer charging and electron transfer reaction, and a strict separation of double-layer charging and ion transport. Ion transport in the entire solution region is described by the Poisson-Nernst-Planck theory and electron transfer kinetics on the electrode surface by the Frumkin-Butler-Volmer theory. Surface dipoles caused by partially charged chemisorbates are considered. The classical Frumkin-Melik-Gaikazyan model for chemisorption is retrieved as a limiting case. The obtained formula is validated using experimental data of hydrogen adsorption at Pt(111). Characteristic frequencies and asymptotic behaviors of chemisorption impedance are analyzed.
000891077 536__ $$0G:(DE-HGF)POF4-122$$a122 - Elektrochemische Energiespeicherung (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000891077 588__ $$aDataset connected to CrossRef
000891077 7001_ $$0P:(DE-HGF)0$$aLi, Chenkun$$b1
000891077 773__ $$0PERI:(DE-600)1472968-4$$a10.1088/1361-648X/abef9d$$p164003 $$tJournal of physics / Condensed matter$$v33$$x0953-8984$$y2021
000891077 8564_ $$uhttps://juser.fz-juelich.de/record/891077/files/Impedance%20and%20resistivity%20of%20low-Pt%20cathode%20in%20a%20PEM%20fuel%20cell_Post_Print.pdf$$yOpenAccess
000891077 8564_ $$uhttps://juser.fz-juelich.de/record/891077/files/Impedance%20response%20of%20electrochemical%20interfaces_part%20II-chemisorption.pdf$$yOpenAccess
000891077 8767_ $$d2021-03-15$$eHybrid-OA$$jOffsetting$$lOffsetting: IOP$$pJPCM-118003.R1
000891077 909CO $$ooai:juser.fz-juelich.de:891077$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000891077 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185067$$aForschungszentrum Jülich$$b0$$kFZJ
000891077 9130_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000891077 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000891077 9141_ $$y2021
000891077 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-03
000891077 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000891077 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-02-03
000891077 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000891077 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS-CONDENS MAT : 2019$$d2021-02-03
000891077 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000891077 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-03
000891077 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-03
000891077 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000891077 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-03
000891077 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2021-02-03$$wger
000891077 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-03
000891077 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-03$$wger
000891077 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-03
000891077 920__ $$lyes
000891077 9201_ $$0I:(DE-Juel1)IEK-13-20190226$$kIEK-13$$lIEK-13$$x0
000891077 9801_ $$aAPC
000891077 9801_ $$aFullTexts
000891077 980__ $$ajournal
000891077 980__ $$aVDB
000891077 980__ $$aUNRESTRICTED
000891077 980__ $$aI:(DE-Juel1)IEK-13-20190226
000891077 980__ $$aAPC
000891077 981__ $$aI:(DE-Juel1)IET-3-20190226