000891134 001__ 891134
000891134 005__ 20230111074308.0
000891134 0247_ $$2doi$$a10.1109/IRMMW-THz46771.2020.9370531
000891134 0247_ $$2ISSN$$a0022-7722
000891134 0247_ $$2ISSN$$a1447-073X
000891134 0247_ $$2ISSN$$a1447-6959
000891134 0247_ $$2WOS$$aWOS:000662887600137
000891134 037__ $$aFZJ-2021-01386
000891134 041__ $$aEnglish
000891134 082__ $$a610
000891134 1001_ $$0P:(DE-HGF)0$$aChen, Genyu$$b0$$eCorresponding author
000891134 1112_ $$a2020 45th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz)$$cBuffalo$$d2020-11-08 - 2020-11-13$$wNY
000891134 245__ $$aMagnetic-Field Enhancement of THz Surface Emission in Highly Resistive GaAs
000891134 260__ $$aTokyo$$bSpringer814959$$c2020
000891134 300__ $$a1-2
000891134 3367_ $$2ORCID$$aCONFERENCE_PAPER
000891134 3367_ $$033$$2EndNote$$aConference Paper
000891134 3367_ $$2BibTeX$$aINPROCEEDINGS
000891134 3367_ $$2DRIVER$$aconferenceObject
000891134 3367_ $$2DataCite$$aOutput Types/Conference Paper
000891134 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1617961027_9159
000891134 520__ $$aIrradiation of semiconductor surfaces with femtosecond optical laser pulses is one of the common techniques for broadband, free-space THz transient generation. We demonstrate that the amplitude of surface-emitted THz pulses scales linearly with an applied, external, in-plane magnetic field. We studied the effect in several highly resistive GaAs samples and ascribe it to the Lorentz force that additionally accelerates optically excited carriers.
000891134 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000891134 588__ $$aDataset connected to CrossRef Conference
000891134 7001_ $$0P:(DE-HGF)0$$aChakraborty, Debamitra$$b1
000891134 7001_ $$0P:(DE-HGF)0$$aCheng, Jing$$b2
000891134 7001_ $$0P:(DE-HGF)0$$aChimera, Charles$$b3
000891134 7001_ $$0P:(DE-HGF)0$$aKomissarov, Ivan$$b4
000891134 7001_ $$0P:(DE-Juel1)128613$$aMikulics, Martin$$b5$$ufzj
000891134 7001_ $$0P:(DE-Juel1)130495$$aAdam, Roman$$b6$$ufzj
000891134 7001_ $$0P:(DE-Juel1)130582$$aBurgler, Daniel E.$$b7$$ufzj
000891134 7001_ $$0P:(DE-Juel1)130948$$aSchneider, Claus M.$$b8$$ufzj
000891134 7001_ $$0P:(DE-Juel1)125593$$aHardtdegen, Hilde$$b9$$ufzj
000891134 7001_ $$0P:(DE-HGF)0$$aSobolewski, Roman$$b10
000891134 773__ $$a10.1109/IRMMW-THz46771.2020.9370531
000891134 8564_ $$uhttps://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9370531
000891134 8564_ $$uhttps://juser.fz-juelich.de/record/891134/files/09370531.pdf$$yRestricted
000891134 909CO $$ooai:juser.fz-juelich.de:891134$$pVDB
000891134 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128613$$aForschungszentrum Jülich$$b5$$kFZJ
000891134 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130495$$aForschungszentrum Jülich$$b6$$kFZJ
000891134 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130582$$aForschungszentrum Jülich$$b7$$kFZJ
000891134 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130948$$aForschungszentrum Jülich$$b8$$kFZJ
000891134 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125593$$aForschungszentrum Jülich$$b9$$kFZJ
000891134 9130_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000891134 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5353$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000891134 9141_ $$y2021
000891134 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000891134 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000891134 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000891134 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bANAT SCI INT : 2015
000891134 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000891134 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000891134 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000891134 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000891134 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000891134 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000891134 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000891134 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000891134 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000891134 920__ $$lyes
000891134 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x0
000891134 9201_ $$0I:(DE-Juel1)VDB786$$kIFF-6$$lElektronische Materialien$$x1
000891134 980__ $$acontrib
000891134 980__ $$aVDB
000891134 980__ $$aI:(DE-Juel1)ER-C-2-20170209
000891134 980__ $$aI:(DE-Juel1)VDB786
000891134 980__ $$aUNRESTRICTED