Home > Publications database > Magnetic-Field Enhancement of THz Surface Emission in Highly Resistive GaAs > print |
001 | 891134 | ||
005 | 20230111074308.0 | ||
024 | 7 | _ | |a 10.1109/IRMMW-THz46771.2020.9370531 |2 doi |
024 | 7 | _ | |a 0022-7722 |2 ISSN |
024 | 7 | _ | |a 1447-073X |2 ISSN |
024 | 7 | _ | |a 1447-6959 |2 ISSN |
024 | 7 | _ | |a WOS:000662887600137 |2 WOS |
037 | _ | _ | |a FZJ-2021-01386 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Chen, Genyu |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
111 | 2 | _ | |a 2020 45th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz) |c Buffalo |d 2020-11-08 - 2020-11-13 |w NY |
245 | _ | _ | |a Magnetic-Field Enhancement of THz Surface Emission in Highly Resistive GaAs |
260 | _ | _ | |a Tokyo |c 2020 |b Springer814959 |
300 | _ | _ | |a 1-2 |
336 | 7 | _ | |a CONFERENCE_PAPER |2 ORCID |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a Output Types/Conference Paper |2 DataCite |
336 | 7 | _ | |a Contribution to a conference proceedings |b contrib |m contrib |0 PUB:(DE-HGF)8 |s 1617961027_9159 |2 PUB:(DE-HGF) |
520 | _ | _ | |a Irradiation of semiconductor surfaces with femtosecond optical laser pulses is one of the common techniques for broadband, free-space THz transient generation. We demonstrate that the amplitude of surface-emitted THz pulses scales linearly with an applied, external, in-plane magnetic field. We studied the effect in several highly resistive GaAs samples and ascribe it to the Lorentz force that additionally accelerates optically excited carriers. |
536 | _ | _ | |a 143 - Controlling Configuration-Based Phenomena (POF3-143) |0 G:(DE-HGF)POF3-143 |c POF3-143 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef Conference |
700 | 1 | _ | |a Chakraborty, Debamitra |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Cheng, Jing |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Chimera, Charles |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Komissarov, Ivan |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Mikulics, Martin |0 P:(DE-Juel1)128613 |b 5 |u fzj |
700 | 1 | _ | |a Adam, Roman |0 P:(DE-Juel1)130495 |b 6 |u fzj |
700 | 1 | _ | |a Burgler, Daniel E. |0 P:(DE-Juel1)130582 |b 7 |u fzj |
700 | 1 | _ | |a Schneider, Claus M. |0 P:(DE-Juel1)130948 |b 8 |u fzj |
700 | 1 | _ | |a Hardtdegen, Hilde |0 P:(DE-Juel1)125593 |b 9 |u fzj |
700 | 1 | _ | |a Sobolewski, Roman |0 P:(DE-HGF)0 |b 10 |
773 | _ | _ | |a 10.1109/IRMMW-THz46771.2020.9370531 |
856 | 4 | _ | |u https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9370531 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/891134/files/09370531.pdf |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:891134 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)128613 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)130495 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)130582 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)130948 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)125593 |
913 | 0 | _ | |a DE-HGF |b Energie |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-143 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-100 |4 G:(DE-HGF)POF |v Controlling Configuration-Based Phenomena |x 0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Materials Systems Engineering |1 G:(DE-HGF)POF4-530 |0 G:(DE-HGF)POF4-535 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Materials Information Discovery |9 G:(DE-HGF)POF4-5353 |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ANAT SCI INT : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)ER-C-2-20170209 |k ER-C-2 |l Materialwissenschaft u. Werkstofftechnik |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)VDB786 |k IFF-6 |l Elektronische Materialien |x 1 |
980 | _ | _ | |a contrib |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)ER-C-2-20170209 |
980 | _ | _ | |a I:(DE-Juel1)VDB786 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|