000891299 001__ 891299
000891299 005__ 20210810182027.0
000891299 0247_ $$2doi$$a10.1109/TMI.2021.3067169
000891299 0247_ $$2ISSN$$a0278-0062
000891299 0247_ $$2ISSN$$a1558-0062
000891299 0247_ $$2ISSN$$a1558-254X
000891299 0247_ $$2Handle$$a2128/28161
000891299 0247_ $$2altmetric$$aaltmetric:102274971
000891299 0247_ $$2pmid$$a33735076
000891299 0247_ $$2WOS$$aWOS:000668842500010
000891299 037__ $$aFZJ-2021-01406
000891299 082__ $$a620
000891299 1001_ $$0P:(DE-Juel1)164254$$aLerche, Christoph W.$$b0$$eCorresponding author$$ufzj
000891299 245__ $$aA Linearized Fit Model for Robust Shape Parameterization of FET-PET TACs
000891299 260__ $$aNew York, NY$$bIEEE$$c2021
000891299 3367_ $$2DRIVER$$aarticle
000891299 3367_ $$2DataCite$$aOutput Types/Journal article
000891299 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1626178322_4266
000891299 3367_ $$2BibTeX$$aARTICLE
000891299 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891299 3367_ $$00$$2EndNote$$aJournal Article
000891299 520__ $$aThe kinetic analysis of 18F -FET time-activity curves (TAC) can provide valuable diagnostic information in glioma patients. The analysis is most often limited to the average TAC over a large tissue volume and is normally assessed by visual inspection or by evaluating the time-to-peak and linear slope during the late uptake phase. Here, we derived and validated a linearized model for TACs of 18F -FET in dynamic PET scans. Emphasis was put on the robustness of the numerical parameters and how reliably automatic voxel-wise analysis of TAC kinetics was possible. The diagnostic performance of the extracted shape parameters for the discrimination between isocitrate dehydrogenase (IDH) wildtype (wt) and IDH-mutant (mut) glioma was assessed by receiver-operating characteristic in a group of 33 adult glioma patients. A high agreement between the adjusted model and measured TACs could be obtained and relative, estimated parameter uncertainties were small. The best differentiation between IDH-wt and IDH-mut gliomas was achieved with the linearized model fitted to the averaged TAC values from dynamic FET PET data in the time interval 4–50 min p.i.. When limiting the acquisition time to 20–40 min p.i., classification accuracy was only slightly lower (-3%) and was comparable to classification based on linear fits in this time interval. Voxel-wise fitting was possible within a computation time ≈ 1 min per image slice. Parameter uncertainties smaller than 80% for all fits with the linearized model were achieved. The agreement of best-fit parameters when comparing voxel-wise fits and fits of averaged TACs was very high (p < 0.001).
000891299 536__ $$0G:(DE-HGF)POF4-525$$a525 - Decoding Brain Organization and Dysfunction (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000891299 588__ $$aDataset connected to CrossRef
000891299 7001_ $$0P:(DE-Juel1)184647$$aRadomski, Timon$$b1$$ufzj
000891299 7001_ $$0P:(DE-Juel1)145110$$aLohmann, Philipp$$b2$$ufzj
000891299 7001_ $$0P:(DE-Juel1)159195$$aCaldeira, Liliana$$b3
000891299 7001_ $$0P:(DE-HGF)0$$aBrambilla, Claudia Regio$$b4
000891299 7001_ $$0P:(DE-Juel1)131797$$aTellmann, Lutz$$b5$$ufzj
000891299 7001_ $$0P:(DE-Juel1)131791$$aScheins, Jurgen$$b6$$ufzj
000891299 7001_ $$0P:(DE-HGF)0$$aKops, Elena Rota$$b7
000891299 7001_ $$0P:(DE-Juel1)143792$$aGalldiks, Norbert$$b8$$ufzj
000891299 7001_ $$0P:(DE-Juel1)131777$$aLangen, Karl-Josef$$b9$$ufzj
000891299 7001_ $$0P:(DE-Juel1)131768$$aHerzog, Hans$$b10$$ufzj
000891299 7001_ $$0P:(DE-Juel1)131794$$aShah, N. J.$$b11$$ufzj
000891299 773__ $$0PERI:(DE-600)2068206-2$$a10.1109/TMI.2021.3067169$$gp. 1 - 1$$n7$$p1852 - 1862$$tIEEE transactions on medical imaging$$v40$$x1558-254X$$y2021
000891299 8564_ $$uhttps://juser.fz-juelich.de/record/891299/files/09381231.pdf
000891299 8564_ $$uhttps://juser.fz-juelich.de/record/891299/files/Postprint_TMI-FET-FIT-final-version-source.pdf$$yOpenAccess
000891299 909CO $$ooai:juser.fz-juelich.de:891299$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000891299 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164254$$aForschungszentrum Jülich$$b0$$kFZJ
000891299 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184647$$aForschungszentrum Jülich$$b1$$kFZJ
000891299 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145110$$aForschungszentrum Jülich$$b2$$kFZJ
000891299 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b4$$kFZJ
000891299 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131797$$aForschungszentrum Jülich$$b5$$kFZJ
000891299 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131791$$aForschungszentrum Jülich$$b6$$kFZJ
000891299 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b7$$kFZJ
000891299 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143792$$aForschungszentrum Jülich$$b8$$kFZJ
000891299 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131777$$aForschungszentrum Jülich$$b9$$kFZJ
000891299 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131768$$aForschungszentrum Jülich$$b10$$kFZJ
000891299 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b11$$kFZJ
000891299 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000891299 9130_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000891299 9141_ $$y2021
000891299 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-03
000891299 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-03
000891299 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-02-03
000891299 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-03
000891299 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE T MED IMAGING : 2019$$d2021-02-03
000891299 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000891299 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000891299 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-03
000891299 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bIEEE T MED IMAGING : 2019$$d2021-02-03
000891299 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000891299 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-03
000891299 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2021-02-03
000891299 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-03
000891299 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000891299 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x1
000891299 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x2
000891299 9201_ $$0I:(DE-Juel1)VDB1046$$kJARA-BRAIN$$lJülich-Aachen Research Alliance - Translational Brain Medicine$$x3
000891299 980__ $$ajournal
000891299 980__ $$aVDB
000891299 980__ $$aUNRESTRICTED
000891299 980__ $$aI:(DE-Juel1)INM-4-20090406
000891299 980__ $$aI:(DE-Juel1)INM-11-20170113
000891299 980__ $$aI:(DE-Juel1)INM-3-20090406
000891299 980__ $$aI:(DE-Juel1)VDB1046
000891299 9801_ $$aFullTexts