001     891385
005     20240708133241.0
024 7 _ |a 10.1016/j.apsusc.2020.147185
|2 doi
024 7 _ |a 0169-4332
|2 ISSN
024 7 _ |a 1873-5584
|2 ISSN
024 7 _ |a 2128/27503
|2 Handle
024 7 _ |a WOS:000574857100003
|2 WOS
037 _ _ |a FZJ-2021-01474
082 _ _ |a 660
100 1 _ |a Yi, Rongxing
|0 P:(DE-Juel1)177042
|b 0
|e Corresponding author
245 _ _ |a 3-Dimensional analysis of layer structured samples with high depth resolution using picosecond laser-induced breakdown spectroscopy
260 _ _ |a Amsterdam
|c 2020
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1616751223_14901
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a 3-Dimensional (3D) analysis is crucial for many materials and can be used to study their structure and properties. Laser-Induced Breakdown Spectroscopy (LIBS) is a versatile tool to get depth information quickly, but the poor depth resolution and in general a difficult quantification are the two main drawbacks. To solve these problems, a LIBS method based on picosecond-laser pulses is introduced. The ablation depth is measured and associated with the laser pulse number. A series of layer-structured graphite samples was tested by this method and the 2D and 3D layer structures of these samples were identified with a resolution of up to 24 and 102 nm for Mo and C elements under a residual pressure of 1 × 10−5 Pa, respectively. This shows the great potential of picosecond Laser-Induced Breakdown Spectroscopy (ps-LIBS) in the field of depth analysis.
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Zhao, Dongye
|0 P:(DE-Juel1)177637
|b 1
|u fzj
700 1 _ |a Oelmann, Jannis
|0 P:(DE-Juel1)169485
|b 2
700 1 _ |a Brezinsek, Sebastijan
|0 P:(DE-Juel1)129976
|b 3
700 1 _ |a Rasinski, Marcin
|0 P:(DE-Juel1)162160
|b 4
700 1 _ |a Mayer, Matej
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Prakash Dhard, Chandra
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Naujoks, Dirk
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Liu, Liwei
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Qu, Junle
|0 P:(DE-HGF)0
|b 9
773 _ _ |a 10.1016/j.apsusc.2020.147185
|g Vol. 532, p. 147185 -
|0 PERI:(DE-600)2002520-8
|p 147185 -
|t Applied surface science
|v 532
|y 2020
|x 0169-4332
856 4 _ |u https://juser.fz-juelich.de/record/891385/files/Postprint_Li_77.pdf
|y Published on 2020-07-16. Available in OpenAccess from 2022-07-16.
909 C O |o oai:juser.fz-juelich.de:891385
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)177042
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)177637
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)169485
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129976
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)162160
913 0 _ |a DE-HGF
|b Energie
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Plasma-Wall-Interaction
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Fusion
|1 G:(DE-HGF)POF4-130
|0 G:(DE-HGF)POF4-134
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Plasma-Wand-Wechselwirkung
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-29
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APPL SURF SCI : 2019
|d 2021-01-29
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b APPL SURF SCI : 2019
|d 2021-01-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-29
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-29
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-29
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-29
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21