Hauptseite > Publikationsdatenbank > 3-Dimensional analysis of layer structured samples with high depth resolution using picosecond laser-induced breakdown spectroscopy > print |
001 | 891385 | ||
005 | 20240708133241.0 | ||
024 | 7 | _ | |a 10.1016/j.apsusc.2020.147185 |2 doi |
024 | 7 | _ | |a 0169-4332 |2 ISSN |
024 | 7 | _ | |a 1873-5584 |2 ISSN |
024 | 7 | _ | |a 2128/27503 |2 Handle |
024 | 7 | _ | |a WOS:000574857100003 |2 WOS |
037 | _ | _ | |a FZJ-2021-01474 |
082 | _ | _ | |a 660 |
100 | 1 | _ | |a Yi, Rongxing |0 P:(DE-Juel1)177042 |b 0 |e Corresponding author |
245 | _ | _ | |a 3-Dimensional analysis of layer structured samples with high depth resolution using picosecond laser-induced breakdown spectroscopy |
260 | _ | _ | |a Amsterdam |c 2020 |b Elsevier |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1616751223_14901 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a 3-Dimensional (3D) analysis is crucial for many materials and can be used to study their structure and properties. Laser-Induced Breakdown Spectroscopy (LIBS) is a versatile tool to get depth information quickly, but the poor depth resolution and in general a difficult quantification are the two main drawbacks. To solve these problems, a LIBS method based on picosecond-laser pulses is introduced. The ablation depth is measured and associated with the laser pulse number. A series of layer-structured graphite samples was tested by this method and the 2D and 3D layer structures of these samples were identified with a resolution of up to 24 and 102 nm for Mo and C elements under a residual pressure of 1 × 10−5 Pa, respectively. This shows the great potential of picosecond Laser-Induced Breakdown Spectroscopy (ps-LIBS) in the field of depth analysis. |
536 | _ | _ | |a 174 - Plasma-Wall-Interaction (POF3-174) |0 G:(DE-HGF)POF3-174 |c POF3-174 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Zhao, Dongye |0 P:(DE-Juel1)177637 |b 1 |u fzj |
700 | 1 | _ | |a Oelmann, Jannis |0 P:(DE-Juel1)169485 |b 2 |
700 | 1 | _ | |a Brezinsek, Sebastijan |0 P:(DE-Juel1)129976 |b 3 |
700 | 1 | _ | |a Rasinski, Marcin |0 P:(DE-Juel1)162160 |b 4 |
700 | 1 | _ | |a Mayer, Matej |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Prakash Dhard, Chandra |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Naujoks, Dirk |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Liu, Liwei |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Qu, Junle |0 P:(DE-HGF)0 |b 9 |
773 | _ | _ | |a 10.1016/j.apsusc.2020.147185 |g Vol. 532, p. 147185 - |0 PERI:(DE-600)2002520-8 |p 147185 - |t Applied surface science |v 532 |y 2020 |x 0169-4332 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/891385/files/Postprint_Li_77.pdf |y Published on 2020-07-16. Available in OpenAccess from 2022-07-16. |
909 | C | O | |o oai:juser.fz-juelich.de:891385 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)177042 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)177637 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)169485 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)129976 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)162160 |
913 | 0 | _ | |a DE-HGF |b Energie |l Kernfusion |1 G:(DE-HGF)POF3-170 |0 G:(DE-HGF)POF3-174 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-100 |4 G:(DE-HGF)POF |v Plasma-Wall-Interaction |x 0 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Fusion |1 G:(DE-HGF)POF4-130 |0 G:(DE-HGF)POF4-134 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Plasma-Wand-Wechselwirkung |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-01-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2021-01-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2021-01-29 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b APPL SURF SCI : 2019 |d 2021-01-29 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b APPL SURF SCI : 2019 |d 2021-01-29 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-01-29 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2021-01-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-01-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-01-29 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2021-01-29 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-01-29 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-4-20101013 |k IEK-4 |l Plasmaphysik |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-4-20101013 |
981 | _ | _ | |a I:(DE-Juel1)IFN-1-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|