000891392 001__ 891392
000891392 005__ 20240711114059.0
000891392 0247_ $$2doi$$a10.1016/j.nimb.2017.12.030
000891392 0247_ $$2ISSN$$a0168-583X
000891392 0247_ $$2ISSN$$a1872-9584
000891392 0247_ $$2WOS$$aWOS:000426223400008
000891392 037__ $$aFZJ-2021-01481
000891392 082__ $$a530
000891392 1001_ $$0P:(DE-Juel1)177637$$aZhao, Dongye$$b0
000891392 245__ $$aAblation mass features in multi-pulses femtosecond laser ablate molybdenum target
000891392 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2018
000891392 3367_ $$2DRIVER$$aarticle
000891392 3367_ $$2DataCite$$aOutput Types/Journal article
000891392 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1616593421_2822
000891392 3367_ $$2BibTeX$$aARTICLE
000891392 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891392 3367_ $$00$$2EndNote$$aJournal Article
000891392 520__ $$aIn this study, the ablation mass features related to reflectivity of bulk Molybdenum (Mo) were investigated by a Ti: Sa 6 fs laser pulse at central wavelength 790 nm. The ablated mass removal was determined using Confocal Microscopy (CM) technique. The surface reflectivity was calibrated and measured by a Lambda 950 spectrophotometer as well as a CCD camera during laser ablation. The ablation mass loss per pulse increase with the increasing of laser shots, meanwhile the surface reflectivity decrease. The multi-pulses (100 shots) ablation threshold of Mo was determined to be 0.15 J/cm2. The incubation coefficient was estimated as 0.835. The reflectivity change of the Mo target surface following multi-pulses laser ablation were studied as a function of laser ablation shots at various laser fluences from 1.07 J/cm2 to 36.23 J/cm2. The results of measured reflectivity indicate that surface reflectivity of Mo target has a significant decline in the first 3-laser pulses at the various fluences. These results are important for developing a quantitative analysis model for laser induced ablation and laser induced breakdown spectroscopy for the first wall diagnosis of EAST tokamak.
000891392 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000891392 588__ $$aDataset connected to CrossRef
000891392 7001_ $$0P:(DE-Juel1)7885$$aGierse, Niels$$b1
000891392 7001_ $$0P:(DE-Juel1)156471$$aWegner, Julian$$b2
000891392 7001_ $$0P:(DE-HGF)0$$aPretzler, Georg$$b3
000891392 7001_ $$0P:(DE-Juel1)169485$$aOelmann, Jannis$$b4
000891392 7001_ $$0P:(DE-Juel1)129976$$aBrezinsek, Sebastijan$$b5
000891392 7001_ $$0P:(DE-Juel1)130088$$aLiang, Yunfeng$$b6
000891392 7001_ $$0P:(DE-Juel1)130109$$aNeubauer, Olaf$$b7
000891392 7001_ $$0P:(DE-Juel1)162160$$aRasinski, Marcin$$b8
000891392 7001_ $$0P:(DE-Juel1)157640$$aLinsmeier, Christian$$b9
000891392 7001_ $$0P:(DE-HGF)0$$aDing, Hongbin$$b10$$eCorresponding author
000891392 773__ $$0PERI:(DE-600)1466524-4$$a10.1016/j.nimb.2017.12.030$$gVol. 418, p. 54 - 59$$p54 - 59$$tNuclear instruments & methods in physics research / B$$v418$$x0168-583X$$y2018
000891392 8564_ $$uhttps://juser.fz-juelich.de/record/891392/files/1-s2.0-S0168583X17310388-main.pdf$$yRestricted
000891392 909CO $$ooai:juser.fz-juelich.de:891392$$pVDB
000891392 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177637$$aForschungszentrum Jülich$$b0$$kFZJ
000891392 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169485$$aForschungszentrum Jülich$$b4$$kFZJ
000891392 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129976$$aForschungszentrum Jülich$$b5$$kFZJ
000891392 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130088$$aForschungszentrum Jülich$$b6$$kFZJ
000891392 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130109$$aForschungszentrum Jülich$$b7$$kFZJ
000891392 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162160$$aForschungszentrum Jülich$$b8$$kFZJ
000891392 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157640$$aForschungszentrum Jülich$$b9$$kFZJ
000891392 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000891392 9132_ $$0G:(DE-HGF)POF4-134$$1G:(DE-HGF)POF4-130$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lFusion$$vPlasma-Wand-Wechselwirkung$$x0
000891392 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-28$$wger
000891392 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-28
000891392 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000891392 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-28
000891392 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-28
000891392 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000891392 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-28
000891392 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNUCL INSTRUM METH B : 2019$$d2021-01-28
000891392 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-28
000891392 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-28
000891392 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-28
000891392 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-28
000891392 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-28
000891392 920__ $$lyes
000891392 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000891392 980__ $$ajournal
000891392 980__ $$aVDB
000891392 980__ $$aI:(DE-Juel1)IEK-4-20101013
000891392 980__ $$aUNRESTRICTED
000891392 981__ $$aI:(DE-Juel1)IFN-1-20101013