Journal Article FZJ-2021-01481

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Ablation mass features in multi-pulses femtosecond laser ablate molybdenum target

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2018
Elsevier Amsterdam [u.a.]

Nuclear instruments & methods in physics research / B 418, 54 - 59 () [10.1016/j.nimb.2017.12.030]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: In this study, the ablation mass features related to reflectivity of bulk Molybdenum (Mo) were investigated by a Ti: Sa 6 fs laser pulse at central wavelength 790 nm. The ablated mass removal was determined using Confocal Microscopy (CM) technique. The surface reflectivity was calibrated and measured by a Lambda 950 spectrophotometer as well as a CCD camera during laser ablation. The ablation mass loss per pulse increase with the increasing of laser shots, meanwhile the surface reflectivity decrease. The multi-pulses (100 shots) ablation threshold of Mo was determined to be 0.15 J/cm2. The incubation coefficient was estimated as 0.835. The reflectivity change of the Mo target surface following multi-pulses laser ablation were studied as a function of laser ablation shots at various laser fluences from 1.07 J/cm2 to 36.23 J/cm2. The results of measured reflectivity indicate that surface reflectivity of Mo target has a significant decline in the first 3-laser pulses at the various fluences. These results are important for developing a quantitative analysis model for laser induced ablation and laser induced breakdown spectroscopy for the first wall diagnosis of EAST tokamak.

Classification:

Contributing Institute(s):
  1. Plasmaphysik (IEK-4)
Research Program(s):
  1. 174 - Plasma-Wall-Interaction (POF3-174) (POF3-174)

Database coverage:
Medline ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; Essential Science Indicators ; IF < 5 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IFN > IFN-1
Workflow collections > Public records
IEK > IEK-4
Publications database

 Record created 2021-03-24, last modified 2024-07-11


Restricted:
Download fulltext PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)