000891481 001__ 891481
000891481 005__ 20210623131802.0
000891481 0247_ $$2doi$$a10.1103/PhysRevB.103.094202
000891481 0247_ $$2ISSN$$a0163-1829
000891481 0247_ $$2ISSN$$a0556-2805
000891481 0247_ $$2ISSN$$a1095-3795
000891481 0247_ $$2ISSN$$a1098-0121
000891481 0247_ $$2ISSN$$a1538-4489
000891481 0247_ $$2ISSN$$a1550-235X
000891481 0247_ $$2ISSN$$a2469-9950
000891481 0247_ $$2ISSN$$a2469-9969
000891481 0247_ $$2ISSN$$a2469-9977
000891481 0247_ $$2Handle$$a2128/27531
000891481 0247_ $$2altmetric$$aaltmetric:102557498
000891481 0247_ $$2WOS$$aWOS:000646421100001
000891481 037__ $$aFZJ-2021-01555
000891481 082__ $$a530
000891481 1001_ $$0P:(DE-Juel1)130955$$aSchober, Herbert R.$$b0$$eCorresponding author
000891481 245__ $$aDiffusion, relaxation, and aging of liquid and amorphous selenium
000891481 260__ $$aWoodbury, NY$$bInst.77671$$c2021
000891481 3367_ $$2DRIVER$$aarticle
000891481 3367_ $$2DataCite$$aOutput Types/Journal article
000891481 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1617960780_7286
000891481 3367_ $$2BibTeX$$aARTICLE
000891481 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891481 3367_ $$00$$2EndNote$$aJournal Article
000891481 520__ $$aRelaxation and aging rates of amorphous selenium and its undercooled melt are calculated by molecular dynamics based on an interaction model derived from density functional calculations. After a fast initial relaxation immediately following the quench, the decrease of diffusivity and the simultaneous increase of dynamic heterogeneity follow an exponential law given by defect annihilation. As observed previously in a Lennard-Jones glass, the non-Arrhenius aging of atomic volume and energy is determined by the time dependence of the diffusivity. The aging time is determined for long times by the diffusivity and diverges exponentially with decreasing temperature. Amorphous selenium differs from metallic glasses in that the breaking of covalent bonds is important for the long time decay of the intermediate self-scattering function (ISSF). Surprisingly for the temperatures investigated, aging of the relaxation times of the ISSF and the bond decay follow the aging of the diffusivity.
000891481 536__ $$0G:(DE-HGF)POF4-522$$a522 - Quantum Computing (POF4-522)$$cPOF4-522$$fPOF IV$$x0
000891481 588__ $$aDataset connected to CrossRef
000891481 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.103.094202$$gVol. 103, no. 9, p. 094202$$n9$$p094202$$tPhysical review / B$$v103$$x2469-9969$$y2021
000891481 8564_ $$uhttps://juser.fz-juelich.de/record/891481/files/PhysRevB.103.094202.pdf$$yOpenAccess
000891481 909CO $$ooai:juser.fz-juelich.de:891481$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000891481 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130955$$aForschungszentrum Jülich$$b0$$kFZJ
000891481 9130_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000891481 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
000891481 9141_ $$y2021
000891481 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-28
000891481 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-28
000891481 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-01-28
000891481 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-28
000891481 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000891481 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-28
000891481 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000891481 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-28
000891481 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-28
000891481 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000891481 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-28
000891481 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2019$$d2021-01-28
000891481 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000891481 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-28
000891481 920__ $$lyes
000891481 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
000891481 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000891481 980__ $$ajournal
000891481 980__ $$aVDB
000891481 980__ $$aUNRESTRICTED
000891481 980__ $$aI:(DE-Juel1)PGI-2-20110106
000891481 980__ $$aI:(DE-82)080012_20140620
000891481 9801_ $$aFullTexts