TY - JOUR
AU - Mendis, Budhika G.
AU - Barthel, Juri
AU - Findlay, Scott D.
AU - Allen, Leslie J.
TI - Inelastic Scattering in Electron Backscatter Diffraction and Electron Channeling Contrast Imaging
JO - Microscopy and microanalysis
VL - 26
IS - 6
SN - 1435-8115
CY - New York, NY
PB - Cambridge University Press
M1 - FZJ-2021-01569
SP - 1147 - 1157
PY - 2020
AB - Electron backscatter diffraction (EBSD) and electron channeling contrast imaging (ECCI) are used to extract crystallographic information from bulk samples, such as their crystal structure and orientation as well as the presence of any dislocation and grain boundary defects. These techniques rely on the backscattered electron signal, which has a large distribution in electron energy. Here, the influence of plasmon excitations on EBSD patterns and ECCI dislocation images is uncovered by multislice simulations including inelastic scattering. It is shown that the Kikuchi band contrast in an EBSD pattern for silicon is maximum at small energy loss (i.e., few plasmon scattering events following backscattering), consistent with previous energy-filtered EBSD measurements. On the other hand, plasmon excitation has very little effect on the ECCI image of a dislocation. These results are explained by examining the role of the characteristic plasmon scattering angle on the intrinsic contrast mechanisms in EBSD and ECCI.
LB - PUB:(DE-HGF)16
C6 - 33190677
UR - <Go to ISI:>//WOS:000596581400008
DO - DOI:10.1017/S1431927620024605
UR - https://juser.fz-juelich.de/record/891503
ER -