000891533 001__ 891533
000891533 005__ 20240712113147.0
000891533 0247_ $$2doi$$a10.3389/fenrg.2021.653542
000891533 0247_ $$2Handle$$a2128/28756
000891533 0247_ $$2altmetric$$aaltmetric:103018756
000891533 0247_ $$2WOS$$aWOS:000639424900001
000891533 037__ $$aFZJ-2021-01586
000891533 082__ $$a333.7
000891533 1001_ $$0P:(DE-Juel1)137024$$aKowalski, Piotr$$b0$$eCorresponding author
000891533 245__ $$aElectrode and Electrolyte Materials From Atomistic Simulations: Properties of LixFEPO4 Electrode and Zircon-Based Ionic Conductors
000891533 260__ $$aLausanne$$bFrontiers Media$$c2021
000891533 3367_ $$2DRIVER$$aarticle
000891533 3367_ $$2DataCite$$aOutput Types/Journal article
000891533 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1633952814_10681
000891533 3367_ $$2BibTeX$$aARTICLE
000891533 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891533 3367_ $$00$$2EndNote$$aJournal Article
000891533 520__ $$aLixFePO4 orthophosphates and fluorite- and pyrochlore-type zirconate materials are widely considered as functional compounds in energy storage devices, either as electrode or solid state electrolyte. These ceramic materials show enhanced cation exchange and anion conductivity properties that makes them attractive for various energy applications. In this contribution we discuss thermodynamic properties of LixFePO4 and yttria-stabilized zirconia compounds, including formation enthalpies, stability, and solubility limits. We found that at ambient conditions LixFePO4 has a large miscibility gap, which is consistent with existing experimental evidence. We show that cubic zirconia becomes stabilized with Y content of ~8%, which is in line with experimental observations. The computed activation energy of 0.92eV and ionic conductivity for oxygen diffusion in yttria-stabilized zirconia are also in line with the measured data, which shows that atomistic modeling can be applied for accurate prediction of key materials properties. We discuss these results with the existing simulation-based data on these materials produced by our group over the last decade. Last, but not least, we discuss similarities of the considered compounds in considering them as materials for energy storage and radiation damage resistant matrices for immobilization of radionuclides.
000891533 536__ $$0G:(DE-HGF)POF4-122$$a122 - Elektrochemische Energiespeicherung (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000891533 588__ $$aDataset connected to CrossRef
000891533 7001_ $$0P:(DE-Juel1)180499$$aHe, Zhengda$$b1$$ufzj
000891533 7001_ $$0P:(DE-Juel1)180208$$aCheong, Oskar$$b2$$ufzj
000891533 773__ $$0PERI:(DE-600)2733788-1$$a10.3389/fenrg.2021.653542$$gVol. 9, p. 653542$$p653542$$tFrontiers in energy research$$v9$$x2296-598X$$y2021
000891533 8564_ $$uhttps://juser.fz-juelich.de/record/891533/files/fenrg-09-653542.pdf$$yOpenAccess
000891533 8767_ $$d2021-04-23$$eAPC$$jDeposit$$lDeposit: Frontiers$$z$2,116.50
000891533 909CO $$ooai:juser.fz-juelich.de:891533$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000891533 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)137024$$aForschungszentrum Jülich$$b0$$kFZJ
000891533 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180499$$aForschungszentrum Jülich$$b1$$kFZJ
000891533 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180208$$aForschungszentrum Jülich$$b2$$kFZJ
000891533 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000891533 9130_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000891533 9141_ $$y2021
000891533 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-29
000891533 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000891533 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-29
000891533 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000891533 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT ENERGY RES : 2019$$d2021-01-29
000891533 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-29
000891533 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-29
000891533 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000891533 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-01-29
000891533 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-29
000891533 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-29
000891533 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000891533 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-01-29
000891533 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-01-29
000891533 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-29
000891533 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-29
000891533 920__ $$lyes
000891533 9201_ $$0I:(DE-Juel1)IEK-13-20190226$$kIEK-13$$lIEK-13$$x0
000891533 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x1
000891533 9201_ $$0I:(DE-Juel1)VDB1346$$kJARA-HPC$$lJülich Aachen Research Alliance - High-Performance Computing$$x2
000891533 9801_ $$aAPC
000891533 9801_ $$aFullTexts
000891533 980__ $$ajournal
000891533 980__ $$aVDB
000891533 980__ $$aUNRESTRICTED
000891533 980__ $$aI:(DE-Juel1)IEK-13-20190226
000891533 980__ $$aI:(DE-82)080011_20140620
000891533 980__ $$aI:(DE-Juel1)VDB1346
000891533 980__ $$aAPC
000891533 981__ $$aI:(DE-Juel1)IET-3-20190226