000891567 001__ 891567
000891567 005__ 20240712101006.0
000891567 0247_ $$2doi$$a10.5194/acp-21-2615-2021
000891567 0247_ $$2ISSN$$a1680-7316
000891567 0247_ $$2ISSN$$a1680-7324
000891567 0247_ $$2Handle$$a2128/27628
000891567 0247_ $$2altmetric$$aaltmetric:100682150
000891567 0247_ $$2WOS$$aWOS:000622972500001
000891567 037__ $$aFZJ-2021-01592
000891567 082__ $$a550
000891567 1001_ $$0P:(DE-Juel1)167439$$aTaraborrelli, Domenico$$b0$$eCorresponding author
000891567 245__ $$aInfluence of aromatics on tropospheric gas-phase composition
000891567 260__ $$aKatlenburg-Lindau$$bEGU$$c2021
000891567 3367_ $$2DRIVER$$aarticle
000891567 3367_ $$2DataCite$$aOutput Types/Journal article
000891567 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1618558147_9426
000891567 3367_ $$2BibTeX$$aARTICLE
000891567 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891567 3367_ $$00$$2EndNote$$aJournal Article
000891567 520__ $$aAromatics contribute a significant fraction to organic compounds in the troposphere and are mainly emitted by anthropogenic activities and biomass burning. Their oxidation in lab experiments is known to lead to the formation of ozone and aerosol precursors. However, their overall impact on tropospheric composition is uncertain as it depends on transport, multiphase chemistry, and removal processes of the oxidation intermediates. Representation of aromatics in global atmospheric models has been either neglected or highly simplified. Here, we present an assessment of their impact on gas-phase chemistry, using the general circulation model EMAC (ECHAM5/MESSy Atmospheric Chemistry). We employ a comprehensive kinetic model to represent the oxidation of the following monocyclic aromatics: benzene, toluene, xylenes, phenol, styrene, ethylbenzene, trimethylbenzenes, benzaldehyde, and lumped higher aromatics that contain more than nine C atoms.Significant regional changes are identified for several species. For instance, glyoxal increases by 130 % in Europe and 260 % in East Asia, respectively. Large increases in HCHO are also predicted in these regions. In general, the influence of aromatics is particularly evident in areas with high concentrations of NOx, with increases up to 12 % in O3 and 17 % in OH.On a global scale, the estimated net changes of trace gas levels are minor when aromatic compounds are included in our model. For instance, the tropospheric burden of CO increases by about 6 %, while the burdens of OH, O3, and NOx (NO+NO2) decrease between 3 % and 9 %. The global mean changes are small, partially because of compensating effects between high- and low-NOx regions. The largest change is predicted for the important aerosol precursor glyoxal, which increases globally by 36 %. In contrast to other studies, the net change in tropospheric ozone is predicted to be negative, −3 % globally. This change is larger in the Northern Hemisphere where global models usually show positive biases. We find that the reaction with phenoxy radicals is a significant loss for ozone, on the order of 200–300 Tg yr−1, which is similar to the estimated ozone loss due to bromine chemistry.Although the net global impact of aromatics is limited, our results indicate that aromatics can strongly influence tropospheric chemistry on a regional scale, most significantly in East Asia. An analysis of the main model uncertainties related to oxidation and emissions suggests that the impact of aromatics may even be significantly larger.
000891567 536__ $$0G:(DE-HGF)POF4-211$$a211 - Die Atmosphäre im globalen Wandel (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000891567 588__ $$aDataset connected to CrossRef
000891567 7001_ $$0P:(DE-HGF)0$$aCabrera-Perez, David$$b1
000891567 7001_ $$0P:(DE-HGF)0$$aBacer, Sara$$b2
000891567 7001_ $$0P:(DE-HGF)0$$aGromov, Sergey$$b3
000891567 7001_ $$00000-0001-6307-3846$$aLelieveld, Jos$$b4
000891567 7001_ $$0P:(DE-HGF)0$$aSander, Rolf$$b5
000891567 7001_ $$00000-0003-2440-6104$$aPozzer, Andrea$$b6
000891567 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-21-2615-2021$$gVol. 21, no. 4, p. 2615 - 2636$$n4$$p2615 - 2636$$tAtmospheric chemistry and physics$$v21$$x1680-7324$$y2021
000891567 8564_ $$uhttps://juser.fz-juelich.de/record/891567/files/invoice_Helmholtz-PUC-2021-21.pdf
000891567 8564_ $$uhttps://juser.fz-juelich.de/record/891567/files/acp-21-2615-2021.pdf$$yOpenAccess
000891567 8767_ $$8Helmholtz-PUC-2021-21$$92021-04-01$$d2021-04-12$$eAPC$$jZahlung erfolgt$$zBelegnr.  1200165527 / 2021
000891567 909CO $$ooai:juser.fz-juelich.de:891567$$pdnbdelivery$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire
000891567 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167439$$aForschungszentrum Jülich$$b0$$kFZJ
000891567 9130_ $$0G:(DE-HGF)POF3-243$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTropospheric trace substances and their transformation processes$$x0
000891567 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000891567 9141_ $$y2021
000891567 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000891567 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000891567 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000891567 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000891567 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2019$$d2021-02-02
000891567 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-02-02
000891567 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-02-02
000891567 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000891567 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-02
000891567 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000891567 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000891567 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-02-02
000891567 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02
000891567 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2019$$d2021-02-02
000891567 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000891567 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000891567 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000891567 9801_ $$aAPC
000891567 9801_ $$aFullTexts
000891567 980__ $$ajournal
000891567 980__ $$aVDB
000891567 980__ $$aUNRESTRICTED
000891567 980__ $$aI:(DE-Juel1)IEK-8-20101013
000891567 980__ $$aAPC
000891567 981__ $$aI:(DE-Juel1)ICE-3-20101013