000891637 001__ 891637
000891637 005__ 20220111142650.0
000891637 0247_ $$2doi$$a10.23967/wccm-eccomas.2020.226
000891637 0247_ $$2ISSN$$a0022-7722
000891637 0247_ $$2ISSN$$a1447-073X
000891637 0247_ $$2ISSN$$a1447-6959
000891637 0247_ $$2Handle$$a2128/27568
000891637 037__ $$aFZJ-2021-01633
000891637 041__ $$aEnglish
000891637 082__ $$a610
000891637 1001_ $$0P:(DE-Juel1)176474$$aKoh, Seong-Ryong$$b0$$eCorresponding author$$ufzj
000891637 1112_ $$a14th WCCM-ECCOMAS Congress$$cdigital$$d2021-01-11 - 2021-01-15$$wdigital
000891637 245__ $$aNumerical Analysis of Oscillatory Flows in the Human Brain by a Lattice-Boltzmann Method
000891637 260__ $$c2021
000891637 29510 $$a14th WCCM-ECCOMAS Congress : [Proceedings] - CIMNE, 2021. - ISBN - doi:10.23967/wccm-eccomas.2020.226
000891637 300__ $$a1-12
000891637 3367_ $$2ORCID$$aCONFERENCE_PAPER
000891637 3367_ $$033$$2EndNote$$aConference Paper
000891637 3367_ $$2BibTeX$$aINPROCEEDINGS
000891637 3367_ $$2DRIVER$$aconferenceObject
000891637 3367_ $$2DataCite$$aOutput Types/Conference Paper
000891637 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1641839678_26014
000891637 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
000891637 520__ $$aThe cerebrospinal fluid flow in a brain ventricular system is analyzed by the numerical approach employing a lattice-Boltzmann (LB) method. The cerebrospinal fluid, which surrounds the human brain and spinal cord, fills the cerebral ventricles as well as the cranial and subarachnoid spaces. Diseases in a central nerve system disrupt the flow circulation which influences on a number of vital functions. A computational fluid dynamics technique is used to determine the member geometry impact on the flow motion. The numerical analysis focuses on building a simulation-based basis for testing/optimizing therapeutical methods and understanding the pathophysiology. Magnetic resonance (MR) imaging is exploited to obtain realistic geometries in a brain ventricular system. The computational domain is discretized by a hierarchical Cartesian octree mesh. The numerical procedure based on an LB method overcomes the difficulties raised by typical finite-difference and finite-volume methods on high-performance computing (HPC) systems. An oscillating flow boundary condition is defined to resolve the kinetic behavior of cerebrospinal fluid in a cardiac cycle. The three-dimensional structures captured in the cerebral ventricles show a qualitative agreement with an observation based on an MR velocity mapping. The simulation on a HPC system is able to provide further insights into the transport from brain to spinal cord.
000891637 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000891637 588__ $$aDataset connected to CrossRef Conference
000891637 7001_ $$0P:(DE-HGF)0$$aKim, J.$$b1
000891637 7001_ $$0P:(DE-Juel1)165948$$aLintermann, Andreas$$b2$$ufzj
000891637 773__ $$a10.23967/wccm-eccomas.2020.226
000891637 8564_ $$uhttps://juser.fz-juelich.de/record/891637/files/14th%20WCCM-ECCOMAS%20Congress%20-%202021%20-%20Numerical%20Analysis%20of%20Oscillatory%20Flows%20in%20the%20Human%20Brain%20by%20a%20Lattice-Boltzmann%20Method%20-%20Koh%2C%20Kim%2C.pdf$$yOpenAccess
000891637 909CO $$ooai:juser.fz-juelich.de:891637$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000891637 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176474$$aForschungszentrum Jülich$$b0$$kFZJ
000891637 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165948$$aForschungszentrum Jülich$$b2$$kFZJ
000891637 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000891637 9130_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000891637 9141_ $$y2021
000891637 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000891637 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000891637 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000891637 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000891637 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bANAT SCI INT : 2015
000891637 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000891637 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000891637 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000891637 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000891637 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000891637 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000891637 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000891637 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000891637 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000891637 920__ $$lyes
000891637 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000891637 980__ $$acontrib
000891637 980__ $$aVDB
000891637 980__ $$acontb
000891637 980__ $$aI:(DE-Juel1)JSC-20090406
000891637 980__ $$aUNRESTRICTED
000891637 9801_ $$aFullTexts